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Abstract: This paper details a nearest neighbour pattern recognition method for hydrological 
time-series forecasting. The aim of the forecasting algorithm is to make single point forecasts 
into the future on the basis of the past nearest neighbours. The nearest neighbours are selected 
using some membership criteria. 

The monthly inflow series at the “Iron Gates I” reservoir was used to illustrate the 
forecasting method. This time –series covers a period on one hundred and sixty years (1840 – 
1999) and contains a great variety of patterns. 

The periodic components of the mean and standard deviation are first eliminated using 
the Fourier approach, and then the pattern modeling was applied to the resulted stochastic 
components time-series. This pattern recognition based tool is a different way to analyze the 
time dependence which exists into the stochastic components time-series of many hydrologic 
variables.  

Two experimentations are developed: the first one having a basic subseries of 144 years 
data and a test subseries of 16 years (10% of total), and the second one with 120 and 
respectively 40 years (25% of total). The forecasts are compared to the actual values over the 
two test periods. The results include the mean and maximum absolute percentage errors, the 
mean and maximum absolute errors and other error measures. An ARMA (4,0) classical model 
obtained with PEST program was used as a reference case. 

The results are very encouraging for operational forecasting purposes, considering the 
small amount of field data used in analysis. The proposed method is simple to understand and 
to put into practice. Further work should be prompted to compare the ability of such tools against 
well established statistical and neural network methods. 
Keywords: time – series forecasting, fuzzy nearest neighbour method, monthly inflows 
prediction in reservoir. 

 
 

1. Introduction 
 Time series prediction is used to support the decision – making in many applications 
areas, including power generation. The most typical estimations are concerned with power load 
forecasting, but in mixed system (hydro and non – hydroelectric plants) some accurate forecasts 
of reservoir inflows allow to the decision – maker to allocate economically the fuel resources, 
production strategies etc. 
 In the past, conventional statistical techniques based on the Box – Jenkins approach 
(ARIMA models) have been extensively used for modeling and predicting time series. This 
approach, although widespread, is only capable to construct linear models. Subsequently, other 
variants of this model have been developed such as ARARMA and delta – NARMA, a non – 
linear extension of the preceding type. Apart from statistical models, a number of advanced 
methods has been applied to the problems of forecasting, including artificial neural networks, 
evolutionary neural networks, neuro – fuzzy systems, fuzzy techniques and pattern imitation 
methods (Singh and Stuart, 1998). 
 In this paper a pattern matching technique is discussed in connection with monthly 
inflows forecasting into “Iron Gates I” reservoir. Thanks to its basic philosophy, the method can 
be named as well a fuzzy nearest neighbour technique. The main characteristic of the nearest 
neighbour pattern recognition method lies in the fact that it is a powerful tool for identifying some 
relationships between current and past data sequences of an univariate time – series. After the 



 

 

identification of several historic neighbours, these could be then used for prediction by either 
averaging their values or using an extrapolation procedure. The accuracy of the method is 
strongly dependent on the pattern matching algorithm. 
 
2. Fuzzy pattern matching 
 A pattern matching approach is based on the realistic premise that current structures of a 
given process can be matched with old structures to perform a future forecast. This approach is 
a fuzzy type one, because there is only a partial match between a current and any possible past 
structure. 
 Pattern modeling refers to the process of describing the time – series as a series of 
patterns. To obtain such patterns, a mathematical formalism must be imposed in time – series 
analysis. This formalism depends on particular origin of the recorded data. Many of hydrological 
processes present a cyclic component, induced by some natural circumstances. Assuming that 
any detectable influences have been removed, the remained time – series data can be 
considered as a vector   s = {s1, s2, …, st}, where st is the latest value in the series. A pattern can 
be specified in terms of the gradient at a given time (i.e. an upward or downward change) and its 
size (number of included segments). If a segment is defined as the difference iii ssd −= +1 , a 
new time –series can be then attached to the original one, i.e. the difference vector 

{ }121 ,...,, −= tdddd . And this new time –series can be encoded mathematically as a vector of 
binary values ib  = 0 or 1. For 0<id  (i.e. ii ss <+1 ) we can choose  ib  = 0 and if 0>id  (i.e. 

ii ss >+1 ), then ib  = 1. In cases when the series doesn’t change ( 0=id ) we can use ib  = 2, 
but such a situation appears only by hazard in hydrological processes. The complete time –
series is therefore encoded as a binary vector { }121 ,...,, −= tbbbb . 
 Formally, a pattern in the time –series contains one or more segments: 

{ }jiid dddp ,...,, 1+=  and can be represented as a binary string: { }jiib bbbp ,...,, 1+= . For a 

total of k segments in a pattern, { }11,...,, −++= kiiid dddp , { }11,...,, −++= kiiib bbbp  and, 

excepting encoded value ib =2, the total number of pattern shapes possible is 12 +k . 
 The basic procedure involving pattern matching for forecasting is summarized as follows: 

1. Suppose that we are at time moment t, having at disposal the known values tsss ,...,, 21  
and trying to predict 1+ts  value. 

2. A pattern size, k, is selected and the latest known pattern of this size is considered, i.e. 
the pattern { }11,...,, −+−−= tktkt bbbc . 

3. Search the time –series { }121 ,...,, −−ktbbb in order to find the closest match for c. 

Suppose that closest match is found as { }11
' ,...,, −+−−= jkjkj bbbc , where j is an index 

to mark the pattern position. Corresponding segments lengths for c and c’ are 
( )11,...,, −+−− tktkt ddd  and ( )11,...,, −+−− jkjkj ddd , and corresponding time – series 

data are ( )ttktkt ssss ,,...,, 11 −+−−  and ( )jjkjkj ssss ,,...,, 11 −+−− . 

4. Use the past pattern to predict the future value 1+ts  by a certain method. The simplest 
one is by averaging the k nearest neighbours, i.e.: 

( ) ksssss jjkjkjt 1211 ... ++−+−+ ++++=             (1) 
 but some other more complicated schema may be adopted. 
 A lot of details should be given for each step. 



 

 

1. Our time –series covers a period of 160 years (1840 – 1999), including monthly inflow data 
i.e. 1920 monthly values. The seasonal component having a period of 12 was first removed by 
using Fourier series for periodic mean and standard deviation. If mjP  and jPσ , j =1,2, …, 12 
denote these values, then the time –series of stochastic process s was derived with: 
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where jiQ ,  is the monthly inflow in the ith year and jth month. The other terms are as follows: 
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 A total number of N = 5 harmonics was selected and the above relations had been used 
to yield the chronologically ordered time –series { }tssss ,...,, 21= , t=1920, where the stochastic 
process s shows (in many cases) a certain time – dependence. For hydrological time –series, 
this is a typical case, and some conventional statistical techniques describe this dependence by 
various linear models as AR, MA, ARMA, ARIMA etc. In this paper, a such dependence will be 
identified by pattern matching. 
 
2. Pattern size, k, could be accepted as an optimization parameter, and the optimal model 
should be selected according to some standard error measures (the mean absolute percentage 
error, the mean square error, etc). For our time –series s, a value of k = 3 provides very good 
results.  
 
3. The closest match for c implies to meet a number of conditions. Taking the current time –
series value ts , the all past values  satisfying a proximity criterion are searched using: 
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where ( )1;0∈α  is a threshold value set by the experimenter. As α  increases, a smaller 
numbers of candidate neighbours are selected. 
 Among all selected candidates js , j=1,2,… only those having a similar pattern 

( )1,... −− jkj bb  with the current pattern ( )1,... −− tkt bb  are analyzed on. 
 The third criterion uses the difference vector to evaluate the estimator 
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for all similar patterns with the current one.  
 Finally, the closest match is accepted for index pattern *j  having  
 { }jj δ=δ min*                                        (6) 
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4. Forecasting method can be selected by a trial and errors procedure, using the recorded data. 
A way is by relation (1), where *jj = . This method has been used in our paper, but in a more 
complex manner: the steps  3 – 4 were resumed for five threshold decreasing values α  (i.e. 

α =0.96; 0.94; … etc) and for each *j  founded index, a forecast value 1+ts  was obtained. The 
final forecast has been accepted as an averaged value among these five individual predictions. 
 An alternative solution makes use of the latest known value, ts , and a change (up or 
down), derived with the closest past and current patterns as –for example: 
  *1 jtt dss ⋅β±=+                  (7) 

where the weighting factor β  is obtained with: 
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and the sign (+) or (-) dictated by the binary value *jb  (- for 0, + for 1).  

 Certainly, other alternatives may be imagined.  
 
3. Numerical results 
 In this paper we compare the fuzzy nearest neighbour method with an AR (4) model 
obtained using the ITSM package – in particular the program PEST (Brockwell and Davis, 1994). 
 Numerical experiment has been conducted as follows: 
- Firstly – the conventional Box –Jenkins procedure has been reproduced and parameters of the 
AR (4) model were derived with PEST, using the complete time –series (1920 monthly values, 
from 1840 through 1999). This model has been accepted as a reference model for both future 
predictions (after 1999) and some previous ones (before 2000). 
- The overall data before 2000 have been divided into an estimation (training) subseries and a 
test (forecasting) subseries. Two sizes were used for this decomposition: 90% ÷ 10%, and 75% 
÷25% of the complete time –series. The aim is to compare the performances obtained with AR 
(4) model and fuzzy pattern matching method in terms of some standard error measures.  



 

 

- Finally, the recorded data collected from January 2000 through March 2002, were used to give 
an up-to-day image on these performances.  
 As error measures were selected: 

- maximum and mean absolute errors, mean error for ( )pii QQ −  
- maximum and mean absolute percentage errors, mean percentage error 

- correlation coefficient ( ) ( )∑∑ −−= 22
mim

p
i QQQQR  

- total number of predictions within 5%, 10% and 20% absolute percentage errors 
where iQ  is the recorded inflow, p

iQ  is the predicted inflow for ith month and mQ  is the 
mean inflow during the test period. 

 In both methods, for current prediction at time i, the necessary (four in PEST, all in fuzzy) 
past recorded data were used. 
 Table 1 shows the comparative performances of the two forecasting models for the test 
periods of 16 and respectively 40 years before 2000. 
 

Table 1 –Ccomparative results on two test periods before 2000 
 PEST Fuzzy nearest neighbour 

Test period 16 years  40 years  16 years 40 years 
MxAE (m3.s-1) 3165 4776 4099 4995 
MnAE (m3.s-1) 965 1013 1031 1124 
MnE (m3.s-1) 29 142 -16 36 
MxAPE (%) 92.01 92.01 91.00 107.25 
MnAPE (%) 20.20 19.50 21.75 21.68 
MnPE (%) -4.32 -2.41 -4.62 -3.66 
R 0.851 0.818 0.955 0.946 

≤ 5% 30 79 34 78 
≤ 10% 62 150 60 149 
≤ 20% 108 281 102 254 

Number  
of  

predictions 
with errors from  192 480 192 480 

 
 It should be observed that on all mean error measures, excepting correlation coefficient, 
the results are very closed. Nevertheless, the pattern matching algorithm has the advantage of 
his great simplicity over the more complex ARIMA modeling. 
 Table 2 shows the monthly inflows from January 2000 through March 2002, together with 
the PEST and fuzzy predictions. The absolute percentage errors are also presented. In 17 
months from 27 (63%) the pattern matching procedure yields better results. The number of 
within 1% APE situations is 4 for fuzzy method and one for PEST, and within 3% APE situations 
is 8 for fuzzy method and 3 for PEST. Honestly, there are 6 predictions with fuzzy method 
exceeding 30% APE and 3 cases only for PEST. 
 
 
 
 
 
 
 
 
 



 

 

Table 2 – Actual data and predictions for January 2000 through March 2002 period 
PEST Fuzzy nearest neighbour   Recorded Q 

(m3.s-1) Predicted Qp 
(m3.s-1) 

Absolute 
percentage 
error (%) 

Predicted Qp 
(m3.s-1) 

Absolute 
percentage 
error (%) 

01.00 6017 5411 10.07 5620 6.60 
02.00 7475 5565 25.55 5536 25.94 
03.00 7892 8263 4.70 8003 1.41 
04.00 10558 8619 18.37 9332 11.61 
05.00 7353 9345 27.09 9681 31.66 
06.00 4130 6364 54.09 7158 73.32 
07.00 3593 4115 14.53 4072 13.33 
08.00 3676 3478 5.39 2954 19.64 
09.00 2696 3458 28.26 3038 12.69 
10.00 3872 2853 23.73 2574 33.52 
11.00 4264 4564 7.09 4282 0.47 
12.00 3974 4513 13.56 4812 21.09 
01.01 5084 3822 24.82 4284 15.74 
02.01 5425 5266 2.93 5382 0.79 
03.01 6854 6666 2.74 7016 2.36 
04.01 8512 7879 7.44 8536 0.28 
05.01 6280 8051 28.20 7452 18.66 
06.01 6230 5748 7.74 6190 0.64 
07.01 5116 5369 4.95 5611 9.68 
08.01 3811 4154 9.00 4132 8.42 
09.01 5690 3479 38.86 3377 40.65 
10.01 4144 4942 19.23 4569 10.26 
11.01 3993 4528 13.40 5407 35.41 
12.01 4445 4463 0.40 4575 2.92 
01.02 4017 4264 6.15 4134 2.91 
02.02 6776 4470 34.03 4624 31.76 
03.02 6595 7891 19.65 7780 17.97 

 
 
 In the figure 1 are plotted the forecasts made with both models and the actual data. 
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Figure 1: Actual data and predictions for 01.2000 – 03.2002 period 

 
4. Conclusion 

The proposed method was evaluated against the classical ARMA model used for 
forecasting. The results on monthly inflow series of Danube river at “Iron Gates I” are greatly 
similar for both methods. By its simplicity, the fuzzy nearest neighbour method could be 
preferable for operational proposes, when is no time to do laborious analysis.  

 The forecasting accuracy of this method is data dependent (theoretically, work better with 
large time –series) and can be improved by optimization of its parameters. 

Further work should be devoted to another way on treating the non – stationary time –series, 
as for example to predict the difference or the difference of difference time –series, followed by 
the translation of forecasts to original data. 
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