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Abstract: We present an alternative method to analyse PMF (Probable Maximum Flood) for 
the more than 40 years discharge data set for Modau river, Germany. We base our analysis 
on the study of the partition function. This function is used to investigate the Modau 
discharge values making use of the different information embedded at different scales and 
moments. Using the partition function in a likelihood analysis in two dimensions (Q, n) to 
define the PMF value, we find the best-fitting model to the best data available at present 

(the). By means of this analysis we find a PMF value maxQ =317
sec

3m  with the likelihood 

function for n=1.8 and maxQ =212
sec

3m  (95 % confidence level). 
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1. Introduction 
 This article is primarily intended to provide procedure for the development of the 
Probable Maximum Flood (PMF). For about last 30 years the PMF has received general 
acceptance as the design flood for dams in Germany, whose failure would pose a threat to 
public safety. More recently, the PMF has received acceptance as the design flood for large 
dams in many other countries as well.  

The PMF is the flood that may be expected from the most severe combination of 
critical meteorological and hydrologic conditions that are reasonably possible in the drainage 
basin under study. A PMF could be generated by the probable maximum precipitation (PMP) 
which is theoretically the greatest depth of precipitation for a given duration that is a 
physically possible for a given size storm area at a particular geographic location at a certain 
time of year.  

Developing a PMF hydrograph for a dam safety evaluation generally involves two 
steps, which are, respectively, hydrologic and hydraulic in nature: 
- Modeling of runoff through the project drainage basin to produce an inflow PMF for the 

project reservoir. 
- Routing of the inflow PMF through the project reservoir and dam outlet works to obtain 

the outflow PMF and the maximum reservoir elevation at the dam.  
These steps involve considering several coincident or sequential events, each of which may 
have a strong effect on the resulting PMF.  
 Estimation of the PMF is less than a perfect science and efforts continue go into its 
refinement. A reason for these indistinctnesses could be that the methods used for modeling 
the runoff are based on standard linear statistical techniques which do not fit when the 
phenomenon to be analyzed is essentially non-linear.  
 One of the previous analysis of the nonlinear characteristics of the runoff was 
developed by Krasovskaia et al. (1999) through the study of dimensionality of Scandinavian 
river flow regimes. The dimension found was a low and non integer value, which indicates 
that the flow system may be described by a nonlinear function of just a few variables. The 
fact that the dimension found was fractal predicts that this function, also called map in 
nonlinear dynamics can display chaotic behavior under certain circumstances.  

In this paper we present a known alternative method in the nonlinear mechanics to 
analyze PMF values based on the partition function. This function contains useful information 
about the discharge anisotropies at the different scales and moments. The method presented 
here is related to the one used by Diego et al. (1999) based on moments at different 
smoothing angles. However, our method is more general and powerful because it works with 
any moment, not only with positive and integer ones.  

The structure of the paper is as follows. In section 2 we present and discuss the 
multifractal analysis and the partition function. In the same section the likelihood analysis 



 

 

based on that function is introduced. The likelihood analysis uses the partition function to 
search for the PMF values that best fit a given data set. In section 3 we apply the results of 
the previous section to the Modau 40 years discharge data set.  

 
(Figure1). 

 
2. The partition function 
 
 The general aim of the multifractal formalism is to determinate the )(αf  singularity 
spectrum of a measure µ . It associates the Haussdorff dimension of each point with the 
singularity exponent α , which gives us an idea of the strength of the singularity: 

( )α
α εε fN −≈)(  (1) 

where )(εαN  is the number of boxes needed to cover the measure and ε  the size of each 
box. 

A partition function Z can be defined from this spectrum: 
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where )(qτ is a spectrum which arouses by Legendre transforming the )(αf  singularity 
spectrum. The spectrum of generalized fractal dimensions is obtained from the spectrum  
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The capacity or box dimension of the support of the distribution is given by  
).0())0((0 τα −== fD  )1())1((0 τα −== fD corresponds to the scaling behavior of the 

information and is called information dimension. (Grassberger and Procaccia, 1983; Peitgen 
et al., 1992) 

In the partition function (Eq.2.) the quantity )(εµi  is the size or scale of the boxes 
used to cover the sample. The boxes are labeled by i and )(εN  is the number of boxes (or 
cells) needed to cover the map when the grid with resolution ε  is used. The exponent q is a 
continuous real parameter that plays the role of the order of the moment of the measure. 

Let us consider a time series with N discharge values. Now the time series is divided 
in boxes of size εε ×  and the measure )(εµi  is computed in each one of the resulting 
boxes. Changing both, q and ε , one calculates the function ),( εqZ . One is free to make 
any choice of the measure )(εµi  provided that several conditions are satisfied, the most 



 

 

restrictive being 0)( ≥εµi . There are no general rules to decide which is the best choice. For 
discharge time series, we use the most natural measure defined as follows:  
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Thus the measure in the box i is the sum of the daily discharge Q of the discharge 

values inside the box in units of 
sec

3m . The measures are interpreted as probabilities and they 

have to be normalized, i.e 1=∑ i
i

µ . So *Q  is simply the sum of the daily discharges and 

therefore it is a constant for all boxes and scales. 
Using the measure proposed in this paper, the differences between two discharge 

data sets (the original and the modified one in order to determine the PMF value) appear 
when high values of the exponent q are considered. The method is able to differentiate 
between two very close models with q ranging between [0,50]. This range for q is in 
agreement with the level of inhomogeneity. We are using daily discharges, that is, we have 
inhomogeneities of order 110−  with respect to the mean value. One can consider q as a 
powerful microscope, able to enhance the smallest differences of two very similar time 
series. Furthermore, q is a selective parameter. Choosing large values of q in the partition 
function, favors contributions from cells with relatively high values of )(εµi  since q

j
q
i µµ >>  

for ji µµ >> , if q<<0. Conversely, q>>0 favors the discharges with relatively low values of 
the measure. This is the role played by the moments, changing q one explores the different 
parts of the measure probability distribution. The other parameter ε , acts like a filter. 
Choosing big values of ε  is similar to apply a large scale filter to the time series. One looks 
at different scales when the parameter ε  is changed. 
  To summarize, Z(q, ε ) contains information at different scales and moments. The 
multi-scale information gives an idea of the correlations in the discharge time series, 
meanwhile the moments are sensitive to possible asymmetries in the data, as well as some 
deviations from Gaussianity. In what follows we show the power of the partition function to 
extract useful information from daily discharge data. 

 
2.1. Likelihood analyis 
 
 We shall use the partition function to encode the information of a given Modau 
discharge series. We compute it both for the measured data and for simulated ones. In this 
process we are comparing the data and the model at several scales and using different 
moments. If there are some differences at some scale or moment, then the partition function 
should make it evident. The likelihood function will have a maximum for the best-fitting model 
to the data. For the daily discharge analyses, we consider models corresponding to different 
values of the spectral index n and the normalization Q. 

The likelihood is defined in the usual way (assuming a Gaussian distribution for ln 
Z(q, ε )). We work with Z=ln Z(q, ε ) instead of Z(q, ε ) because of the large values of q 
which make impossible to compute directly Z(q, ε ),  
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and )(iZ  is the average of the Z for the realizations of the model at bin i. Realization 
means: systematically changed discharge values at randomly chosen time positions. The 
index i defines pairs of values (q, ε ). That is, i runs from 1 to the total number of points  pN  

where Z(q, ε ) is defined. )(iZD  is the value of Z for the experimental data at bin i.  

ijM is the covariance matrix calculated with Monte Carlo realizations:  
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)(iZk denotes the value of Z at bin i for the k realization (Falconer, 1990). 

We have two possibilities to perform a best fit to the data. The first one is to minimize 
2χ  and take the values of maxQ and n at the minimum of the 2χ  surface as the best-fitting 

values. The second possibility is to work with the likelihood L looking for the maximum. We 
tested the two possibilities using simulated discharge time series derived from a given pair of 
parameters ( maxQ , n). Due to daily discharge variance we obtain a set of maxima in the 

likelihood and of minima in the 2χ . The conclusion is that the likelihood is somewhat better 
than the 2χ  as expected.  
 
3. Results 
 In order to determine which are the values of the quadrupole normalization Q and the 
spectral index n that best fit the Modau discharge data, we perform Monte Carlo simulations 
of the time-series for a scale-free model with an equal multifractal spectrum.  

We consider different values for Q and the n ranging from Q=0.5 
sec

3m  to Q=750 
sec

3m  

and from n=0.3 to n=4.3. We add instrumental noise based on the number of data collected 
by TU Darmstadt. Furthermore, there is another effect that must be taken into account, the 
seasonal variance. To treat conveniently this effect we perform a large number of simulations 
(more than 2000) for each pair of values (Q, n) and then we compare the average Z(q, ε ) 
values of these simulations with the Z corresponding to the Modau discharge time series (the 
used values for q and ε  were q=1,4,7,25 and ε =3,4,8,16). The size of the Z(q, ε ) grid, is 
not critical and what is now relevant is the q values considered. In particular, high order 
moments (i.e large q) are very sensitive to the tail of the distribution and therefore the results 
obtained with those high values on the parameter estimates are not stable. The combination 
of q and ε  values, was one of the combinations for which the recovered parameters Q and n 
were closer to the input parameters and with smaller error bars. As mentioned in section 2, q 
should take values of order 110− . The values of q where chosen to be asymmetric in an 
attempt to consider possible asymmetries. The range for ε  runs from 3 pixels to 16 pixels 
which is the largest box size required to have at least 8 boxes. Using a maximum likelihood 
method one can determine which are the best-fitting parameter values of the simulations 
(signal + noise) to the Modau discharge data. 

In Fig. 2. we show a contour plot of the likelihood obtained for the Modau discharge 

data. The maximum is at maxQ =317
sec

3m  and  n=1.8 (95% marginalised errors) and the 

contour level at 68% is compatible with the assumed standard value Q=188 with n=1. The 
various analysis of the 40 years Modau data combined give as the best-fitting parameters 
Q=212 and n=1.2. The result presented here predicts larger values of n and smaller values 
of  maxQ  than the result indicated above (although always inside the anticorrelation law for 
the two parameters).  



 

 

This result is in agreement with the one found by Bakucz (1999), using an another 
approach. A possible explanation for the discrepancy between our results and those 
obtained with the another methods could be a bias present in the likelihood estimator. In the 
tests of our algorithm we found a systematic bias in the marginalized likelihood functions 
both for Q and n with typical values of 2.0=∆n  and 2=∆Q 03 which could explain part of 
our discrepancy. The reason for this bias can be the difference between the assumed 
Gaussian form for the likelihood of the partition function in eq. (2) and the real non-Gaussian 
distribution. The probability distribution of the Z at each (q, ε ) obtained from simulations is 
similar to a Gaussian probability distribution but with a longer tail for high values. We also 
think that maybe the noise can contribute to that bias. The high order moments (large q) of 
the partition function are very sensitive to the tails of the distribution of the seasonal 
fluctuations. A low signal to noise ratio (as is the case for the Modau data) could raise the 
parameter n that best fit the Modau data. We did some tests in this direction and apparently 
the noise can increase the value of n (and consequently can produce a lower value of Q). 

 
Figure.2. 
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