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Abstract. 
 
The calibration, respectively the validation of the hydrological or hydrogeological 
parameters of the mathematical models is a difficult task, having not till now an 
adequate response. The parameters used in physically based mathematical models 
have a physical meaning and are measured in-situ. Still, using these measured 
parameters does not lead automatically to a correct response of the modeled process, a 
time-consuming process of parameters calibration and validation being necessary. 
Although there are different computer codes based on automatic search, the specialists 
usually prefer a “trial-and-error” procedure, because this way they can control better 
the optimization  process, matching the calculated values with their own perception 
about the plausible parameters. In the paper, several considerations on the statistical 
characteristics of the parameters, function of the grid size, are presented. Because the 
error function has usually local optima, our purpose is to identify a family of near-
optimal solutions, for which the errors obtained during the mathematical modeling 
process are rather close, placed in a relatively narrow interval. During the simulations, 
as a consequence, the results, either state values or output values, are obtained as an 
interval. If an unique value is needed, it can be achieved based on a linear 
combination of the partial results provided by each set of parameters from the quasi-
optimal vectors family. 
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1. Physical considerations 
 
 In the case of physically based hydrological models, the parameters have a 
physical meaning and can thus be measured in the field. However, a contradiction 
between the strictly local character of the parameters thus obtained and the mean 
value, corresponding to the representative elementary surface used in hydrological 
modeling, respectively the representative elementary volume in hydrogeological 
modeling appears. 
 That is why the discretization  of the equations describing the physical process 
leads to the necessity of  parameters calibration, even if a great number of 
measurements in situ are available; as a result, their measured values only have an 
indicative role, referring to the order of magnitude or to the range in which the 
effective parameters used in modeling can vary. The role of the measured parameters 
diminishes as the discretization of the hydrological or hydrogeological basin becomes 
rougher ,as in the models with quasi-distributed or global parameters (fig. 1).  
 



 

 

 

 
 

 
 

 

Fig. 1 – Discretization  of the study domain 
a) – river basin;   b) hydrogeological basin 

 
 
 At the limit, in the case of hydrological models with global parameters, 
respectively hydrogeological models for homogenous aquifers, the values determined 
in situ for some parameters are of no practical use. Besides, in these cases, even the 
model’s type is modified, getting a conceptual character, to the detriment of the 
physical meaning of the processes (P. Serban, 1996). 
 
 
2. Statistical relationship: discretization mesh size – parameters value   
 
 The obvious need of using field data must be connected to the necessity of a 
quick calibration of the parameters. On the other hand, it is proved that hydrological 
or hydrogeological parameters have a statistical distribution. One of the first models 
taking this into account is the Stanford model (Serban and others, 1989), in which the 
repartition function of infiltration capacity linearly varies between a null value, for 
impervious areas, and a maximum value, for the most permeable areas; thus, in this 
model, the repartition density of local infiltration on the river basin surface is 
supposed to be uniform. 
 In most cases however, the wide range of genetic factors, as well as their 
additional or multiplying effect over the parameters’ value usually lead to normal or 
lognormal distribution functions. We can mention here the lognormal distribution of 
hydraulic conductivities, noticed while processing data from measurements of some 
regional aquifers (Fl. Zamfirescu, 1996). 
 The most important element that influences the values of the calibration 
parameters within distributed models is the size of the discretization element, iA , 
which may be thus considered as explanatory variable (fig. 2) 
 



 

 

 
 
 

Fig. 2 One-dimensional distribution functions 
for the discretization  element’s different values. 

 
 

 The parameters range reaches its greatest value in the case of some 
experimental determinations, which have a strictly local character (e.g. the infiltration 
rate into the soil) or quasi-local respectively (like the hydraulic conductivities or 
transmissivities for regional aquifers, obtained by pumping tests, lasting a limited 
period of time and which partially mobilize the aquifer’s capacity of water transfer or 
water storage– V. Pietraru, 1977).  
 However, the range of parameters diminishes with the increase of surfaces or 
volumes of the discretization elements. Denoting by α  any parameter of the models, 
its repartition density for different values of the discretization element’s surface may 
be plotted as in figure 2. 
 For every discretization element we introduce by modeling an average value 
of local state variables, as well as for the parameters resulted from the calibration 
procedure. During the calibration process, the  parameters values will be selected not 
only by purely mathematical reasons but also depending on other available 
information, referring to physiographical, geological or hydrogeological 
characteristics. The quasi-local parameters, attached to the discretization elements, 
will have a smaller range, corresponding to this averaging process. However, the 
statistical distribution type is supposed to remain the same, obviously with other 
statistical parameters. 
 The greater is the size of discretization elements, the more reduced is the 
variation of parameters. At the limit, when the discretization element is the whole 
modeled basin, the value of the searched parameter is unique. As a result of the 
process implied by a rougher  discretization, the limit value of the analyzed parameter 
may be supposed to be the statistical average of punctual values obtained by 
measurements. 



 

 

 The previously presented facts lead to the idea of using a two-dimensional 
repartition of every parameter’s repartition; the plot in fig. 2 suggests in fact such a 
distribution, the shown distribution of the densities being obtained by its intersection 
with various planes =iA ct. 
 
 
3. Discretization  - quality of modeling relationship 
 
 There is however a direct relationship between the size of the discretization 
element and the quality of the simulation, which requires the use of a mesh as smooth 
as possible. Calculus precision or simulation quality is usually defined by one of the 
following two indicators (A. Musy, 1998): 
 

− the root mean squared error between the calculated and the measured values , 
or the standard deviation, given by the relation: 
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− the 2R  Nash-Suitcliff efficiency criterion: 
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 The notations have the following meaning: 
 m

iy  and c
iy  are the measured, respectively calculated values, of the system’s 

output values (discharges) or of the state variables (e.g. levels of the groundwater); 
 F  - the sum of the squares of the differences between the calculated values 
and the measured ones; 
 0F  - the “initial” deviation of the observed values in relation to their average: 
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 The more refined is the discretization in the case of the models with 
distributed parameters, the better is the precision, meaning that the error function (1) 
is more reduced, respectively the 2R  Nash-Suitcliff efficiency criterion is closer to the 
unity (fig. 3); at the opposite side there are the models with global parameters, for 
which the average square deviation of the errors ε  has a maximum value, respectively 

2R  criterion is minimum. 
 
 



 

 

 
 

Fig.3.  Modeling precision vs. the discretization element’s surface 
 
 
4. Statistical distribution of parameters 
 
 Further on, for a simplified approach, we consider that the repartition of 
punctual values (respectively parameters repartitions obtained after rougher 
discretizations) have a gaussian behavior with  the same mean value of the parameter 
m, which is the value corresponding to the whole studied domain. Depending on the 
grid size, the limits of the confidence interval which contain (with a given probability) 
the calibration parameters values, might be established for the chosen distribution (see 
fig. 2). 
 For the probability density function of parameters, normal or lognormal 
distribution may be chosen: 
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 The parameters Aσ  and '

Aσ  depend non-linearly on the surface of 
discretization elements, and they could be defined by the following expressions: 
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 In the relations (5) and (6), as well as in the example shown in figure 2, the 
parameters m  or µ  were taken as constant, independently of the grid size. A linear or 
even non-linear trend line might as well be admitted for the average value, depending 
on the surface; in this case, in the relations (5) and (6), instead of m  or µ , the 
notations Am , Aµ  respectively will be used, while the definitions are similar to (6). 
 
 
5. The random character of the system’s response  
 
 Generating artificial values with a chosen distribution for every parameter 
having a physical meaning will lead to a random output of the system; we can expect 
that those parameter values leading to the minimum values of the residuals are also 
the most credible. Accepting as valid the sets of parameters which lead to relatively 
close optimal error functions (in a range of differences of 5-10%), a family of quasi-
optimal type of solution vectors is obtained, each vector corresponding to a local 
optimum of the objective function defined by the relations (1) or (2). We notice that in 
the case of using of function (1) its minimum values are searched, while for the other 
optimization criterion the goal is to find the parameters configurations that maximize 
the function (2). 
 The choice of the quasi-optimal calibration vectors from the sets of parameters 
kept in the previous phase must be performed taking into account the physical 
constraints as well, which reflect the nature of the studied system. 
 Finally, in order to validate the quasi-optimal parameters’ family with the sets 
selected after this last trial, simulations with input data not used in the calibration 

process will be performed. Corresponding to each set of parameters j ( ),1
_____

mj =  from 
the selected family, a weight function reflecting the quality of the obtained results will 
be calculated (Shamseldin et al, 2000); as weight functions, the following expression 
can be used: 
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 In the simulation phase of any hydrological or hydrogeological model, the 
obtained results for each set j of parameters lead to an interval of the system’s 
possible responses; thus, the response value could be statistically characterized 
(average value, value characterized by a certain exceeding probability, average square 
deviation, confidence interval with a certain probability etc.). If one wishes to obtain a 
unique value of the response, the partial results are to be weighted with the jw  



 

 

coefficients (the WAM - Weighted Average Method), the final result being a linear 
convex combination of them.  

Surpassing the limits of classical optimization, based on the premise of a 
global optimum, is thus being tried; the so-called flexible optimization, by means of 
accepting some sub-optimal solutions, may be an attractive alternative. 
 
 
Conclusions 
 
 The statistical approach for the scale effect means to introduce supplementary 
parameters for each parameter of the examined system which have a physical 
meaning: m  or µ  (may be Am  or Aµ ) for the average, respectively 10 , aa  and 2a  
for the average square deviation. Obviously, for more than a few parameters, the 
calibration process becomes prohibitive from the computation time point of view. 
 The approach presented here infers artificial generating of the parameters’ 
sets, their trial based on repeated simulations during the calibration and validation 
process or based on physical reasons, as well as the use of a WAM procedure of 
weighting the results obtained for the sets of parameters having been retained as 
quasi-optimal solutions. 
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