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Abstract: The aim of this paper is to investigate the possibility of estimating probability of
simultaneous occurrence (coincidence) of low flows in two rivers. Three aspects are
considered: (1) joint distribution of low flows of two rivers before junction using bivariate
normal distribution after logarithmic transformation of flows; (2) mutual dependance of flows
at two rivers by means of the correlation field; (3) distribution of the sum of flows at two rivers
before junction to describe flows downstream of the junction. The results of analysis with 30-
days minimum flows from two hydrologic stations in Serbia is used to demonstrate the
correlation ellipses, probability of simultaneous occurrence of low flows, and the distribution
function of the sum of flow rates at two stations compared to the downstream control station.
Keywords: low flows, simultaneous occurrence, bivariate distributions.

1. Introduction

Simultaneous occurrence of extreme low flows in two rivers is an interesting issue
when hydrologic stations are situated near the junction of two rivers, and there is no
hydrologic station immediately downstream the junction. The aim of this paper is to
investigate the possibility to estimate probability of simultaneous occurrence (coincidence) of
low flows in two rivers and corresponding probability of low flows downstream of the junction.

When considering flow rates in two rivers near their junction, it is virtually certain that
they are mutually dependent with a certain degree of correlation. Dependance of two flow
rate series can be investigated by using the regression analysis and/or multivariate
distributions. The latter approach is applied in this study.

Among various multivariate distributions in the statistical theory, bivariate normal
distribution has been studied far more extensively than any other multivariate distribution and
the mathematical apparatus for its calculation is more easily applicable then for other
bivariate distributions. However, hydrological variables, such as low flows, are generally
skewed and it is therefore necessary to perform their normalization, i.e. to transform the
random variables so that the resulting series are normally distributed. The most common
transformation is the logarithmic function.

In this paper we shall review the bivariate normal distribution and present the
procedure for obtaining the probability distribution function of low flows downstream the
junction of two rivers.

2. Bivariate normal distribution

2.1. Definition and calculation

Simultaneous occurrence of two random variables, X; and X5, is described with a
bivariate distribution function defined as:

X1 X2
F(x1,X2)=P{X1 < x3, X5 <xo} = [ [F(x3,%7) dxqdx, (1)

where f(x4,X;) is the joint probability density function of random variables X; and X,. Bivariate
normal distribution assumes that the two random variables X; and X, are normally
distributed, with means m; and m, and standard deviations s; and s,, respectively. The
normal joint density function is defined with:
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where r is the correlation coefficient between X; and X,. By substituting:

t1:X’|_m’|, t2=X2_m2 (3)
S4 Sy
the bivariate normal distribution function can be standardized:
—2rt,t, +12
®(h,k)=P{t; <h,t, <k} = j j { 12 "2 }cmc/t2 (4)
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To enable calculations of ®(h,k), the above expression is expanded into a series
(Abramowitz and Stegun, 1970):
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The derivatives ¢"(f) can be expressed using the Hermite polynomials:

o!"(t)= (=1)"Hn (t)(t)
The Hermite polynomials are defined by the following recurrent formula:
Ho(t)=tH,_4(t)=(n-NH,_(t) n=2
Ho(t)=1
H, ()=t

2.2. Correlation field

The normal joint density of two variables X; and X, (eqn. 2) forms a 3D bell shape,
whose cross-sections for f(x4,xo) = const are elliptical contours, called correlation ellipses.
The same is true for the standardized normal joint density of t; and t,. These contours define
ranges of the variables within which specified proportion of the probability distribution lies. If
o is the probability that the variables t; and ¢, are inside the correlation ellipse (domain E):

1 t2 —2rtqt, +t22}
a=—— | exp{— dtyat,
2m1-r2 E 2(1-r?)
it can be shown (Johnson and Kotz, 1972) that the corresponding ellipse has the equation:
t2 —2rtit, +t5 =-2(1—-r?)In(1- ) (6)

For a fixed value t, = k, the above equation gives pairs of values h; and h, for the variable t;.
and the ellipse can be constructed for specified probability o.

2.3. Transformation of variables

As indicated in introduction, hydrological variables are seldom normally distributed.
They are generally skewed, and therefore it is necessary to transform them so that the
resulting series are normally distributed.



The logarithms of flow rates can usually be fitted to the normal distribution. If the
variable log Q is normally distributed, then Q follows the two-parameter log-normal
distribution. Similarly, if log(Q — Qo) is normally distributed, then Q follows the three-
parameter log-normal distribution. Coincidence of low flows in two rivers is then analyzed
using the bivariate normal distribution of two random variables X; and X, defined as:

X1 =109(Qy = Qpq)
X5 =10g(Q; —Qp2)

where Q; and Q, are flow rates at two rivers, and Q,; and Qq, are location parameters of
three-parameter log-normal distributions fitted to the series of Q; and Q.. Statistics of the
series X; and X, are means my and m,, standard deviations s; and s,, and skews g, = g, = 0.

(7)

3. Flow rates downstream of the junction

If some characteristic flow rates Q; and Q, in two streams are known (e.g. flow rates
of specified probability), it is of practical importance to determine the same characteristic flow
rate Q; after the junction of two streams.

The transformed random variable Z, representing the flow downstream the junction, is
defined as the sum:

Z = X1 + X2 (8)
The domain of the variable Z, represented as area D in Figure 1, is the area below the line
X1 + Xo = z. Distribution function F(z) of the variable Z is then:

oo Z—Xq

F(z)=P{Z<z}=[[f(xq,X2)dxsdxy = [dx; [f(xq,X3)dx, (9)
X1+X2£Z —oo —oo

where f(x4,X;) is the bivariate normal density (2). Differentiating the above equation in respect

to z, we obtain:

f(z)= ]'of(x1,z—x1 )ax4 (10)
X2/
z
D
z
/;\\‘f; . > X1
/ /t»

Figure 1. Domain of integration of bivariate normal density function for the sum of
transformed variables representing flow rates at two streams.



Integrating the right-hand side of (10) it can be shown that Z is normally distributed:
o 2
f(Z): 1 .exp{_ (Z m1 m2) } (11)
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From the above equation it is clear that the mean and the variance of Z are:
m., = m1 + m2

2Z 2 2 (12)

Sy =S7 +2rs4Sy + S5

Distribution function of Z is then:

F(z)=

m_jwexp{ 2”; ) } (13)

However, if the transformation of the original variables is logarithmic (such as in (7)),
then the sum of the transformed variables (8) leads to the product of the original variables,
which is not what are we looking for. Therefore, if variables Q; and Q, follow log-normal
distribution, the above procedure is not suitable for finding the distribution function of their
sum.

In case that variables Q; and Q, follow the Pearson type Il distribution (or three-
parameter gamma), random variable Z = Q; + Q, will also be Pearson Il (or three-parameter
gamma) distributed with the following parameters:

- mean: m, =m;+m,
; : 2 _ 2 2
— variance: Sy =87 +2rs84S, +85 (14)
skew: _ [ 3 3+3 ]
- : 9z =—519157 + 9255 +3(Myp +myq)
SZ

where m4, s1, g4 and my, S,, g» are means, standard deviations and skews of Q; and Q,
respectively, and m4, and m,, are second-order mixed moments of two variables.

4. Case study

The subject of this study was coincidence of low flows at station Mojsinje on the
Juzna Morava river and station Jasika on the Zapadna Morava river (Figure 2). The
downstream control station was station Varvarin on the Velika Morava river.
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Figure 2. Location of the hydrologic stations in the study.



The analysis was based on 30-days minimum flows. Data covered the 1959-1994
period. In order to apply the bivariate normal distribution of flows at the two stations, it was
necessary to transform the flows according to equation (7). Location parameters Qg and Q.
are chosen so that the resulting series X = log(Q; — Qy), j = 1,2, have skewness coeffcients
equal to 0. Table 1 presents statistics of the series. The correlation coefficient between
transformed flow rates at stations Jasika and Mojsinje is 0.726.

Table 1. Statistics of flow rates at stations Jasika and Mojsinje.

Flow rates Q log Q log(Q — Qo)
Jasika Mojsinje Jasika Mojsinje Jasika Mojsinje
location parameter Qg 4.219 0.697
mean 29.03 20.91 1.432 1.285 1.352 1.267
standard deviation 11.63 9.24 0.162 0.176 0.195 0.184
coef. of variation 0.401 0.442 0.113 0.137 0.144 0.145
coef. of skewness 1.382 1.781 0.212 0.064 0.000 0.000

The correlation ellipses are constructed according to equation (6) for different
probabilities o and they are shown in Figure 3. However, correlation ellipses are suitable for
checking if the bivariate normal distribution is an appropriate model, i.e. for checking whether
a specified percentage of observed pairs of values (Q4, Q) fall into a corresponding ellipse.

For analyzing the probability of simultaneous occurence of low flows at two stations
smaller then a specified value, it is more convenient to construct lines of equal probabilities
of non-exceedance. Such lines are presented in Figure 4.
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Figure 3. Correlation ellipses for stations Mojsinje and Jasika.
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Figure 4. Lines of equal probability of simulatneaous non-exceedance of flow rates
F(Q,Q,)=P{Q,<£q,,Q, <q,} at stations Mojsinje and Jasika.

Distribution function of flow rates downstream of the junction of two rivers was
obtained using the Pearson type lll distribution, as explained in section 3. Relevant statistics
and parameters are given in Table 2.

Figure 5 presents distribution functions of 30-days low flows at stations Mojsinje and
Jasika, distribution function of the sum of these flows, as well as the distribution function of
the station Varvarin as the control station.

It can be seen that the distribution of the sum agrees very well with the distribution of
the control station in the domain of low waters. Since the other domain (below the probability
of 80%) is not very interesting for the low flow analysis, disagreement of these two
distributions is not essential.

Table 2. Statistics of flow rates for stations Jasika and Mojsinje, their sum and flow rates
at the downstream control station Varvarin.

Jasika Mojsinje sum of Jasika Varvarin
and Mojsinje
Qq Q. Q:=Q1+Q Q3

mean 29.03 20.91 49.94 54.59
standard deviation 11.63 9.24 19.58 22.57
coef. of skewness 1.382 1.781 1.609 1.517
mixed moment my» 1248.16

mixed moment my, 1416.85

correlation coefficient (Q1,Q,) 0.758
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Figure 5. Distribution functions of individual stations, their sum and of the control station.
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