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Abstract The purpose of the present paper is the building of a conditional stochastic model to 
generate daily precipitation time series. The model is a mixture of a two-state first order Markov 
chain and a statistical downscaling model based on the canonical correlation analysis (CCA). 
The CCA model links the large-scale circulation, represented by the European SLP field, with 
the four precipitation distribution parameters: transition probabilities and gamma distribution 
parameters. This model has been tested for the Bucharest station at which long observed daily 
time series were available (1901-1999). The comparison between the skill of the conditional 
stochastic model and the unconditional stochastic model (based only on a Markov chain) is 
presented using an ensemble of 1000 runs of the two models.  
The performance of the conditional stochastic model is analyzed regarding the skill of the CCA 
model in estimation of the four precipitation distribution parameters and the stochastic model 
performance in reproducing the statistical features of the generated precipitation time series. 
The CCA model is most skillful for winter and autumn (transition probabilities), slightly skillful for 
the mean precipitation amount on rainy days and unskillful for the shape parameter. There are 
no significant dissimilarities between the conditional and unconditional models regarding their 
performance except for the linear trend, which is better captured by the conditional model. Some 
statistical features are well reproduced by both stochastic models for all seasons, while other 
statistical features are only partially reproduced by both models or are better reproduced by one 
of the models. In conclusion, the conditional stochastic model presented in this paper can be 
successfully used to generate daily precipitation time series for winter and autumn. For the other 
seasons, the unconditional model can be used to reproduce some statistical features. 
Keywords: stochastic model, daily precipitation, Markov chain, canonical correlation. 
 

KONDITIONIERTE STOCHASTISCHE MODELLE ZUR ERZEUGUNG  TÄGLICHER 
NIEDERSCHLAGSREIHEN 

 
Zusammenfassung: Ein konditioniertes stochastische Modell zur Erzeugung von täglichen 
Niederschlagsreihen wird beschrieben. Es umfasst ein Markov Model mit zwei Zuständen und 
ein lineares Downscaling Modell. Letzteres verbindet die großskalige Zirkulation, gegeben durch 
das Europäische Luftdruckfeld, mit vier charakteristischen Größen der Niederschlagstatistik: den 
Übergangswahrscheinlichkeiten und Charakteristika der Gamma-Verteilung. Das Model wurde 
entwickelt und getestet für den Ort Bucharest, wo eine lange Reihe täglicher Beobachtungen 
vorliegt (1901-1999). Das konditionierte Modell wird verglichen mit dem entsprechenden 
unkonditioniertem Modell, in dem die großskalige Zirkulation keine Rolle spielt. Dazu werden 
Ensemble von 1000 Simulationen durchgeführt und miteinander verglichen. 
Das CCA Modell ist besonders erfolgreich in der Beschreibung der 
Übergangswahrscheinlichkeiten im Winter und Herbst, etwas weniger erfolgreich bei der 
Bestimmung des Niederschlagsmenge und gar nicht erfolgreich im Hinblick auf den 
Formparameter der Gamma-Verteilung. Die Konditionierung der Parameter auf das großskalige 
Feld verbessert die Simulation der täglichen Niederschlagsreihen im Hinblick auf langsame 
Trends, während andere Eigenschaften ebenso erfolgreich vom unkonditionierten Modell 
simuliert werden. Im Frühjahr und Sommer erscheint das unkonditionierte Modell ausreichend. 



 

 

Stichworte: Stochastische Modelle, täglicher Niederschlag, Markov-Kette, Kanonische 
Korrelation. 
 
1. Introduction 

Hydrological and crop models usually require as input data daily precipitation time series. 
To evaluate the sensitivity of these models to long-term changes in the precipitation regime an 
ensemble of input data sets are needed. The observed sequences provide only one realization 
of the weather process. In impact studies that use as input data precipitation time series derived 
from the simulated climate change scenarios, the number of these sequences are still limited 
due to high computational cost of these scenarios. To evaluate the range of results that may be 
obtained with other statistically equivalent series it is desirable to generate synthetic sequences 
of precipitation data based on the stochastic structure of the meteorological process. Richardson 
(1981) presented such a technique to simulate daily values of precipitation, maximum and 
minimum temperature, and solar radiation. For the precipitation component, a two state first-
order Markov chain has been used to describe the precipitation occurrence and the exponential 
distribution has been used to approximate the distribution of rainfall amount. This model has 
also been used by Wilks (1992) with gamma distribution instead of exponential distribution. In 
this case the model has been adapted for climate change studies.  

Such models may be conditioned on large-scale meteorological conditions, which 
incorporate the cause-effect information about the probability of wet or dry conditions. There are 
various ways to define the large-scale conditions such as: large-scale circulation indicies (Katz 
and Parlange ,1993) circulation classification (Zorita et al., 1995; Goodess and Palutikov, 1998) 
and analogs (Zorita et al., 1995). Lettenmaier (1995) showing the advantages and 
disadvantages of various models has presented a synthesis of the stochastic models of 
precipitation (conditional and unconditional). Non-linear approaches, such as neural networks, 
have been developed recently (Cavazos, 1999; Zorita and von Storch, 1999). In a recent 
synthesis of empirical downscaling methods used in synoptic climatology, Yarnal et al. (2001) 
have discussed the advantages and disadvantages of stochastic models. They found , in the 
case of climate change, the conditioning of the stochastic parameters in a physical meaningful 
way difficult to achieve. 

In this paper a stochastic model conditioned upon large- scale climate characteristics to 
generate daily precipitation amount is presented. The model uses a first order Markov chain 
combined with a downscaling model. To link the precipitation distribution parameters with the 
large-scale circulation, represented by the sea level pressure on the European scale (SLP), a 
regression model based on the canonical correlation analysis (CCA) has been used (von Storch 
et al., 1993; Heyen et al., 1996; Busuioc et al., 1999, 2001). In this way an adjustment of 
stochastic parameters in a some physical meaningful way is proposed. The model has been 
tested for Bucharest station at which long daily observations are available (1901-1999). More 
details about the methodology are presented in Section 2. The skill of the downscaling model in 
estimating the parameters of precipitation distribution, and the skill of the conditional stochastic 
model in reproducing the most important statistical features of the generated precipitation time 
series, are shown in Section 3. The comparison between the skill of the conditional and the 
unconditional stochastic model is also presented. Compared to other similar models the 
procedure presented in this paper gives the confidence intervals of the precipitation distribution 
parameters derived from 1000 Monte Carlo runs of both models. The conclusions are presented 
in Section 4. 

 
2. Methodology 

The model presented in this paper is a combination between a first order Markov chain 
and a statistical downscaling model. In the following it is referred to as conditional stochastic 
model. Additionally, the unconditional stochastic model based only on a first order Markov chain 



 

 

is used in order to assess the performance of the conditional model for climate change 
proposes. Both models are tested for the daily precipitation amount at Bucharest station placed 
in the southern part of Romania. Observational data refers to the interval 1901-1999 and they 
are seasonally stratified: Winter (December-February), Spring (March-May), Summer (June-
August), Autumn (September-November).  

 
2.1. Unconditional model 

Precipitation occurrence is described by a two-state, first order Marcov chain. The 
precipitation either occurs or it does not (the two states) and the conditional probability of 
precipitation occurrence depends only on the occurrence on the previous day. There are two 
parameters describing the precipitation occurrence process: the transition probability p01, the 
probability of a wet day following a dry day, and p11, the probability of a wet day following a wet 
day. As a wet day, the case of daily precipitation amount > 0.1 mm is considered in this paper. 
The choice of the optimum precipitation threshold is an important decision. Dobi-Wantuch et al. 
(2000) have analyzed the threshold influence on the results and found the 0.1 threshold as the 
appropriate one.  

The variation of precipitation amount on wet days is described by the gamma distribution 
which has two parameters: the shape parameter (k) and the scale parameter (β) (Coe and Stern, 
1982; Wilks, 1992). In terms of the two distribution parameters, the mean precipitation amount 
(considering only wet days) is µ=kβ. In this paper µ and k are considered the gamma distribution 
parameters. µ is estimated as the sample mean from the observed data set and k is derived as 
solution of the equation, 

              )ln()ln()()ln( xxkk −=−ψ   
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represents in our case the daily precipitation amount for wet days.  
The p01, p11 transition probabilities were estimated from the observed data set. Therefore, 

the stochastic model to generate daily precipitation depends on four parameters (p01, p11, µ and 
k) and it is referred in the following as unconditional model. The four parameters were computed 
over the complete interval for every month and their seasonal variation was revealed. This was 
the reason to divide the data set into four seasons and to build the model for eachseason. The 
highest variability for µ and lowest for the transition probabilities was identified.  

In conclusion, the daily precipitation for wet days are generated (in the case of 
unconditional model) using the four parameters computed from observation over a fixed interval 
following the procedure presented by Wilks (1992). Knowing whether precipitation occurred on 
the previous simulated day, the appropriate transition probability, p01 or p11 is compared to a 
newly generated uniform [0, 1] random number. A wet day is simulated if the random number is 
smaller than the transition probability. If this is the case, a random precipitation amount is 
generated for the current day using the appropriate gamma distribution. Since the four 
parameters are kept constant stationary precipitation time series are generated. This is a 
disadvantage of the unconditional model when used in the climate context. However, this 
drawback can be overcome by using the conditional stochastic model, which links unconditional 
stochastic model parameters to large-scale circulation parameter, as described below.  

 
2.2. Conditional stochastic model 

To link the four parameters of the unconditional stochastic precipitation model to the 
large-scale circulation, a regression model has been constructed with the help of a canonical 
correlation analysis (CCA; von Storch et al., 1993; Heyen et al., 1996; Werner and von Storch, 
1993; Busuioc et al., 1999, 2001). European-scale sea level pressure anomalies are chosen as 
a representing the large-scale circulation. The monthly SLP data with a resolution of 5ox5o have 



 

 

been provided by the National Centre of Atmospheric Research (NCAR, USA) (Trenberth and 
Paolino, 1980). The SLP area of 5o-50oE and 30o-55oN was selected, so that the skill of the 
downscaling model linking seasonal precipitation over Romania and SLP is maximum. It has 
been already shown that seasonal precipitation amount in Romania is strongly connected with 
the European SLP distribution, especially for winter and autumn (Busuioc and von Storch, 1996; 
Busuioc et al., 1999). Therefore a strong connection between the four parameters characterizing 
the daily precipitation distribution and the SLP field were assumed to prevail. In the Section 3 it 
will be shown that this assumption is correct, especially for winter and autumn. 

The stochastic parameters (p01, p11, µ and k) are computed for every season from 90 to 
92 daily precipitation amounts in every year. In this way, a time series of the parameters is 
obtained. Prior to the CCA the four parameters have been standardized. The CCA determines 
pairs of patterns of two-time-dependent variables (the large-scale SLP and the four stochastic 
parameters) so that their time components are optimally correlated. Prior to the CCA, the original 
data are standardized, by subtracting the mean from the original value and by dividing with the 
standard deviation. The SLP data are projected onto their EOFs (Empirical Orthogonal 
Functions) to eliminate noise (small-scale features) and to reduce the dimension of the data. 
Since the time coefficients are normalized to unity the canonical correlation patterns represent 
the typical strength of the signals. A subset of CCA pairs is then used in a regression model to 
estimate the four stochastic parameters from the large-scale SLP. The precipitation distribution 
parameters (p01, p11, µ, k) estimated through the CCA model are then used in the stochastic 
model in order to generate daily precipitation amounts. These time series are achieved for each 
season in every year. Since the four parameters should satisfy some conditions (0 ≤ p01, p11 ≤ 1 
and µ, k > 0) the CCA model outputs are processed by applying the reversed operation of 
standardization before being used in the stochastic model. 

 
2.3. Skill of stochastic model 
The full data set 1901-1999 was split in two intervals, 1901-1949 and 1950-1999. Then, 

both unconditional and conditional model were fitted with one interval and validated with the 
other interval, so that two models were fitted and validated independently. The skill of the CCA 
downscaling model is expressed through the variance explained by the reconstructed values as 
a fraction from the total variance of the observed values or, alternatively, by the correlation 
between observed and reconstructed values. Additionally, the performance of the models was 
determined in terms of how well the model reproduces the statistical features of the precipitation 
time series: 

•  Appearance/nonappearance of precipitation quantified by: mean and expected 
maximum duration of wet and dry intervals; 

• Daily mean and standard deviation of precipitation for rainy days, expected maximum 
daily precipitation amount and frequency distributions of daily precipitation;  

• Induced changes (linear trend) in the seasonal precipitation amount. The significance 
of the linear trend is estimated by the Mann-Kendall statistic (Sneyers, 1975). 

These statistical features have been computed for the two subintervals.  
In this paper an ensemble of 1000 simulations was generated and the statistical 

parameters mentioned above were expressed as ensemble means with their 90% confidence 
intervals computed with a bootstrapping procedure. 

 
3. Results 
 
3.1 Precipitation distribution parameters 

The CCA analysis has identified pairs of patterns in the SLP fields and in combined 
vector of the transition probabilities (p01, p11) and gamma distribution parameters (µ, k) whose 



 

 

time series share a maximum of correlation. The correlation coefficients R1 and R2 associated to 
the first two CCA pairs for the four seasons are presented in Table 1. The explained variance of 
the seasonal SLP anomalies and four parameter anomalies are also presented. The strongest 
link has been found for winter and autumn. Similar results were achieved when the direct 
relationship between the SLP field and seasonal precipitation in Romania was analyzed 
(Busuioc and von Storch, 1996; Busuioc et al., 1999). 
 
Table 1.  Canonical correlation coefficients (R1, R2) ( x 100) and explained variance of the first 
two CCA pairs of seasonal mean SLP and the four parameters of precipitation distribution. 
 1901-1949 1950-1999 
Season R1 R2 Explained variance (%) R1 R2 Explained variance (%) 
   SLP Parameters   SLP Parameters 
   CCA1 CCA2 CCA1 CCA2   CCA1 CCA2 CCA1 CCA2 
Winter 77 49 45 7 29 27 78 42 38 21 33 9 
Spring 66 53 31 6 24 25 51 40 22 8 29 22 
Summer 67 55 11 10 30 22 65 44 13 7 30 21 
Autumn 82 48 16 34 34 18 80 52 10 37 29 32 
 

 The first CCA pair generally shows similar physical mechanisms even if it is more 
difficult to be explained in terms of statistics of precipitation distribution such as transition 
probabilities and gamma distribution parameters. The CCA analysis has been done for two  

Figure 1.  The patterns of the first two CCA pairs of the winter mean SLP and winter parameters of  
precipitation distribution as derived from observation (1901-1949). 
 
subintervals: 1901-1949, 1950-1999. The first CCA pair is almost identical for the two 
subintervals for all seasons except for a slight shift and spatial extension of the pattern nucleus. 
Figure 1 shows, as an example, the first two CCA pairs for the winter season.  

A southerly /northwesterly circulation over Romania in winter is associated with 
above/below normal daily mean precipitation within wet days and higher transition probabilities 
to rainy days at Bucharest. This mechanism seems to be reasonable from a physical point of 
view; southwesterly circulation brings moisture air mass from Mediterranean basin to Romania 
(especially in the southern part where Bucharest station is located) and more precipitation is 

1 2 3 4

-100

-80

-60

-40

-20

0

20
 CCA1

st
an

da
rd

iz
ed

 a
no

m
al

ie
s 

*1
00

   
   

   
   

 

1 1 12 13 14

-4 0

-2 0

0

2 0

4 0

6 0

st
an

da
rd

iz
ed

 a
no

m
al

ie
s*

10
0 

   
   

   
  

 C C A 2

29% 27% 



 

 

recorded. As a result, the daily precipitation mean on rainy days (µ) and the probability to have a 
wet day (p01+p11) is higher. However, the link to µ is mostly weak in all seasons, except for 
autumn. This seems to contradict the presence of strong link between SLP and total seasonal 
precipitation amount  (Busuioc and von Storch, 1996; Busuioc et al., 1999). However, these two 
observations may be reconciled by noting that the monthly total is dominated by the number of 
wet days and less dependent on the mean amount on wet days. In fact, the correlation between 
µ and first SLP EOF (very similar to the first CCA pattern) time series is low, while the correlation 
with the number of rainy days is high. The link between SLP variations and k variability is 
unclear, with the sign of the link changing, when different fitting periods are used.  

The SLP pattern of the second CCA pair is different over the two subintervals for winter 
(not shown) but for the other seasons they are stable apart of slight shifts of the center of the 
SLP pattern (not shown). The mechanisms given by the second CCA pair can not be physically 
interpreted in a manner presented for the first CCA pair.  

The skill of the statistical downscaling model built up by using the time coefficients 
associated to the four CCA pairs is presented in Table 2. The skill is calculated for the 
subintervals, which are not used to fit the statistical model. The model is most skillful for winter 
and autumn (transition probabilities), slightly skillful for µ (winter, especially for 1951-1999 
interval) and unskillful for the shape parameter k.  
 
Table 2. Skill of the CCA model  (expressed as percentage of explained variance/correlation coefficient) 
for estimation of the four parameters (P01,  P11 , µ , k) from the SLP field over the two subintervals 
considered as independent data set. 
Season 1901-1949 1950-1999 

 P01 P11 µ k P01 P11 µ k 
Winter 45 /  67 16 / 43 4 / 23 - 39 / 63 24 / 49 11 / 33 - 
Spring - 7 / 26 -7 / 26 -7 / 21 9 / 30 - -3 / 18 - 
Summer -19 / 14 8 / 30 - - 2 / 39 6 / 34 - - 
Autumn 50 / 71 21 / 47 -14 / 14 - 51 / 72 15 / 38 -12 / 8 - 
 

Figure 2 shows, as an example, the temporal evolution of the observed and estimated 
standardized anomalies for winter. As it can be seen the two curves vary coherently for the 
transition probabilities, the amplitude is sometimes different but the year to year evolution is 
quite good for µ, but for the shape parameter k the dissimilarities are substantial. 
 
3.2. The skill of the stochastic model 

The four parameters (p01, p11, µ and k), estimated directly from precipitation data (case of 
unconditional model) and indirectly from European SLP through the statistical downscaling 
model presented above (case of conditional model) are then used in the Markov chain model to 
generate daily time series with appearance and nonappearance of precipitation. The daily 
precipitation amount is randomly generated using a gamma distribution. The performance of 
these stochastic models is assessed in terms of how well they reproduce the statistical features 
of the precipitation time series presented in Section 2. These features are represented by: 
maximum duration of dry and wet intervals ( maxmax , wetdry dd ), mean duration of dry and wet intervals 

( mean
wet

mean
dry dd , ), daily mean /standard deviation of precipitation within rainy days (ppmean, ppsd), 

mean number of rainy days (nr), Mann-Kendall statistic (t), expected maximum of daily 
precipitation amount (ppmax) and frequency distributions of daily precipitation within various 
intervals. After running of unconditional and conditional models 1000 times a distribution of 
these parameters is achieved. Then, the ensemble mean and their 90% confidence intervals of  

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Winter standardized anomalies of the precipitation distribution parameters for the 1901-1999 as 
derived from observation (solid line) and as derived indirectly from the observed European-scale SLP 
anomalies by using the downscaling model (dashed line) fitted over the 1901-1949 interval. 
 
the respective parameters were computed and these values are considered as expectations for 
these parameters.  

These statistics derived through both stochastic models and directly from observation are 
presented in Tables 3 and 4. They were computed separately for the two subintervals. The 
mean duration and expected maximum duration of wet intervals are very well simulated for all 
seasons, both subintervals and both models (unconditional and conditional); there are no 
significant differences between unconditional and conditional models. The expected maximum 
duration of dry intervals is better estimated by the unconditional model and overestimated by the 
conditional model even if for both models the observed values are generally covered by the 90% 
confidence intervals. Mean duration of the dry intervals is well simulated by both models for 
winter and summer (1901-1949) and autumn (1950-1999). Both models except for spring (both 
intervals) overestimate the observed values.  

The seasonal mean of the number of rainy days is generally well reproduced by both 
stochastic models, except for spring (1901-1949, both models and 1950-1999, conditional 
model) and autumn (1950-1999, both models) when the number is underestimated by the 
conditional model and overestimated by the unconditional model. The daily mean of precipitation 
for wet days is generally well reproduced by both stochastic models (with small differences for 
the 1950-1999 interval) while the standard deviation is better estimated for the 1901-1949 
interval (both models), except for summer when it is underestimated. For the 1951-1999 interval 
both models underestimate the standard deviation for all seasons (less for summer). Expected 
maximum daily precipitation is generally underestimated for all seasons (both models) but the 
observed values are covered by the 90% confidence intervals, except for summer (1901-1949) 
and winter and autumn (1950-1999).  

In order to assess if the stochastic model reproduces the linear trend of the observed 
precipitation time series, the Mann-Kendall statistic (t) was computed for the seasonal 
precipitation amount as derived directly from observation and indirectly from generated daily 
time series. A t-value greater than 1.96 allows the rejection of the null hypothesis with a risk of 
5% and less, provided that the data are not serially correlated. This t-statistic was computed for 
every experiment of the 1000 run ensemble. Table 3 contains the ensemble mean of this 
statistic with its 90% confidence interval.   
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Table 3 Statistics of precipitation regime (maximum duration of dry and wet intervals – d^max_dry, 
d^max_wet, mean duration of dry and wet intervals-, d^mean_dry, d^mean_wet, daily mean /standard 
deviation of precipitation within rainy days-pp_mean / pp_var; mean number of rainy days- nr; Mann-
Kendall statistic - t, expected maximum of daily precipitation amount – pp_max) at the Bucharest station 
derived directly from observations and indirectly through the stochastic conditional model (cond) and the 
stochastic unconditional model (uncond.). These statistics are computed as ensemble means for 1000 
runs and they are derived over the two subintervals considered as independent data set. The 90% 
confidence intervals for the parameters derived through conditional and unconditional models are also 
presented 

Season d^max_dry d^max_wet d^mean_ 
dry 

d^mean_ 
wet 

Pp_mean Pp_var Nr t Pp_max 

1901-1949 
Winter    Obs. 24 10 4.3 2.1 3.8 5.4 28 2.4 58.6 
 Cond. 35 12 4.3 2.1 4.1 5.1 30 1.0 44.1 
  (25, 51) (9, 16) (4.1, 4.5) (2.0, 2.2) (3.9, 4.4) (4.7, 5.5) (28, 31) (-0.2, 2.2) (33.6, 60.4) 
               Uncond. 27 12 4.3 2.1 4.2 5.2 29 0.02 45.1 
  (21, 36) (9, 16) (4.1, 4.6) (2.0, 2.2) (4.0, 4.4) (4.9, 5.7) (29, 31) (-1.6, 1.7) (34.5, 60.1) 
Spring    Obs.        25 13 3.7 2.0 4.6 6.4 31 -0.6 61.6 
 Cond. 33 12 5.0 2.1 4.9 6.3 27 1.4 57.8 
  (25, 45) (9,  16) (4.7, 5.3) (2.0, 2.2) (4.6, 5.2) (5.8, 6.9) (26, 29) (0.2, 2.7) (42.8, 81.9) 
               Uncond. 24 12 3.9 2.2 4.9 6.3 34 0.01 54.8 
  (19, 33) (10, 16) (3.7, 4.1) (2.1, 2.3) (4.7,  5.2) (5.9,  6.7) (32,  3.5) (-1.6, 1.7) (41.6, 72.8) 
Summer Obs.        29 9 4.0 1.9 7.0 10.8 28 0.1 136.6 
 Cond. 27 10 3.9 1.8 6.7 8.6 29 0.9 75.6 
  (20, 35) (8, 13) (3.8, 4.1) (1.8, 1.9) (6.3, 7.1) (7.9, 9.3) (28, 30) (-0.6, 2.3) (56.7, 101.6)
               Uncond. 25 10 4.0 1.8 6.7 8.7 29 0.5 74.4 
  (20, 34) (8, 13) (3.8, 4.2) (1.8, 1.9) (6.3, 7.1) (8.0, 9.3) (28, 31) (-0.9, 2.0) (55.8, 99.7) 
Autunn   Obs.        30 12 4.7 2.0 5.2 7.7 25 -1.1 59.6 
 Cond. 40 10 6.0 1.9 6.0 7.6 23 0.1 66.8 
  (29, 54) (8, 14) (5.3, 5.6) (1.8, 2.0) (5.6, 6.3) (6.9, 8.4) (22, 25) (-1.0, 1.2) (49.0, 91.9) 
 Uncond. 36 10 5.6 1.9 5.9 7.6 23 0.1 63.6 
  (27, 47) (8, 13) (5.3, 6.0) (1.8, 2.0) (5.5,  6.3) (7.0, 8.2) (22, 25) (-1.3, 1.5) (48, 85.7) 

1950-1999 
Winter    Obs. 31 11 4.0 2.1 4.2 6.0 29 -1.0 60.9 
 Cond. 36 12 4.5 2.1 3.8 4.4 29 -1.8 39.1 
  (26, 51) (9, 16) (4.3, 4.7) (2.0, 2.2) (3.6, 4.0) (4.1, 4.8) (28, 30) (-3.0, -0.6) (29.0, 54.2) 
               Uncond. 29 12 4.6 2.2 3.8 4.6 29 0.02 38.5 
  (23, 39) (9, 16) (4.3, 4.8) (2.1, 2.3) (3.6, 4.0) (4.3, 4.9) (28, 31) (-1.7, 1.7) (30.0, 51.2) 
Spring    Obs. 28 12 3.7 2.1 4.9 7.2 33 -0.4 58.8 
 Cond. 32 12 5.1 2.0 4.6 5.5 26 -2.0 47.6 
  (25, 43) (9, 16) (4.8, 5.3) (1.9, 2.1) (4.3, 4.8) (5.1, 5.9) (25, 28) (-3.3, -0.7) (35.3, 64.8) 
               Uncond. 25 11 3.9 2.0 4.6 5.7 32 0.02 49.0 
  (19, 33) (9, 15) (3.7, 4.1) (2.0, 2.1) (4.4, 4.8) (5.3, 6.1) (30, 33) (-1.7, 1.6) (37.1, 65.0) 
Summer Obs. 28 10 3.7 1.8 6.7 9.7 29 1.1 88.2 
 Cond. 29 11 4.2 1.9 7.0 8.7 29 -0.2 75.3 
  (22, 40) (8, 15) (4.0, 4.5) (1.8, 2.0) (6.6, 7.4) (8.1, 9.4) (27, 30) (-1.6, 1.4) (57.1, 101.9) 
               Uncond. 27 11 4.3 1.9 7.0 8.8 29 -0.02 75.5 
  (21, 36) (8, 14) (4.1, 4.5) (1.9, 2.9) (6.6, 7.4) (8.2, 9.5) (27, 30) (-1.6, 1.5) (58.2, 100.2) 
Autunn   Obs. 31 11 5.1 1.9 5.9 8.8 23 1.1 93.0 
 Cond. 39 11 5.0 2.0 5.0 6.2 26 -0.3 53.1 

 
As it was expected the unconditional model does not show any significant change. The 

conditional model better reproduces the winter trend even if it is underestimated for the first 
interval and overestimated for the second one. In springtime the conditional model also 
overestimates the trend. One reason explaining these results could be the failure of the CCA 
model in estimating of the k parameter and the relatively low skill for µµµµ. Another reason could be 
the urbanization effect in Bucharest. For the 1901-1949 interval the winter European SLP 



 

 

variation, given by the time series associated to the first EOF, reveals a slightly decreasing trend 
(not significant using the Mann-Kendall test) that leads to simulated precipitation which are close 
to normal. For the 1950-1999 interval, the situation is reversed: the time series associated to the 
first SLP EOF present a very strong decreasing trend (associated to less frequent southwesterly 
circulation over Romania) that induces less precipitation, but much less than observations where 
the urbanization effect is added, which is associated with a precipitation increase.  
Figure 3 shows the frequencies of dry and wet intervals with various lengths derived from 
observation and from unconditional and conditional stochastic models as ensemble means over 
1000 runs. Only the results for winter are displayed. The frequencies of the extreme events such 
as dry intervals longer than 15 days are separately presented. Generally, there are no significant 
differences between the results achieved with unconditional and conditional models, except for 
spring (short intervals) when the unconditional model is better. For the other seasons the 
unconditional model is slightly better than the conditional one for shorter dry intervals. The best 
agreement with observations is obtained for winter and autumn (especially for wet intervals). For 
all seasons, the dry intervals of one- two day length are less frequent in simulation then in 
reality. Generally, the shorter dry intervals are underestimated and the longer dry intervals 
(greater than 9 days) are overestimated. The frequency of the extreme events is very well 
reproduced for winter and summer. 

The performance of the stochastic model in generating daily precipitation time series was 
also quantified when the frequencies of days with precipitation amount within or exceeding some 
thresholds were analyzed. These results are presented in Table 4. For the 1901-1949 interval, in 
spite of some failures of the CCA model for spring and summer, the mean frequencies of days 
exceeding 20 mm are covered by the 90% confidence intervals of both models for all seasons. 
For other thresholds the conditional model is, generally, better except for winter (5 mm- 15 mm) 
when the values are overestimated by both models and autumn (≤ 5mm) when the values are 
underestimated. For the interval 1950-1999 the results are not so good, the observed 
frequencies are generally underestimated. 
 
Table 4. Seasonal mean frequencies of the daily precipitation amount derived from the observed data set 
and from the generated time series through conditional and unconditional stochastic model. The values 
are computed as ensemble means of 1000 runs over the subinterval 1901-1949 considered as 
independent data set. The 90% confidence intervals for the conditional and unconditional stochastic 
models are also presented in parenthesis. 
Season ≤ 5 mm (5mm, 

10mm] 
(10 mm, 
15 mm] 

> 10 mm > 15 mm > 20 mm 

Winter  Obs. 21.4 4.1 1.4 2.8 1.4 0.5 
 Cond. 21.5 

(20.4,  22.7) 
5.2 

(4.6,  5.8) 
1.9 

(1.6,  2.2) 
3.2 

(2.8,  3.7) 
1.3 

(1.1,  1.6) 
0.6 

(0.4,  0.8) 
 Uncond. 21.5 

(20.4,  22.8) 
5.1 

(4.5,  5.7) 
2.0 

(1.6,  2.3) 
3.4 

(3.0,  3.9) 
1.5 

(1.2,  1.7) 
0.6 

(0.5,  0.8) 
Spring     Obs. 22.1 5.1 1.9 4.0 2.1 1.0 

 Cond. 18.6 
(17.5,  19.8) 

4.8 
(4.3,  5.4) 

2.0 
(1.7  2.4) 

3.9 
(3.4  4.4) 

1.9 
(1.5  2.2) 

0.9 
(0.7  1.2) 

 Uncond. 22.7 
(21.5  23.9) 

5.9 
(5.3  6.5) 

2.6 
(2.2  2.9) 

5.0 
(4.4  5.5) 

2.4 
(2.1  2.8) 

1.2 
(0.9  1.4) 

Summer   Obs. 17.0 5.1 2.4 6.2 3.8 2.3 
 Cond. 17.1 

(16.2  18.0) 
5.5 

(5.0  6.1) 
2.8 

(2.4  3.2) 
6.5 

(5.8  7.1) 
3.7 

(3.2  4.1) 
2.2 

(1.8  2.5) 
 Uncond. 17.4 

(16.4  18.4) 
5.4 

(4.8  6.0) 
2.8 

(2.4   3.2)  
6.5 

(5.9  7.1) 
3.8 

(3.3  4.2) 
2.2 

(1.9  2.6) 
Autumn   Obs. 17.3 3.9 1.7 4.0 2.3 1.3 

 Cond. 14.3 
(13.3  15.2) 

4.3 
(3.9  4.9) 

2.0 
(1.7  2.4) 

4.4 
(3.8  4.9) 

2.3 
(1.9  2.7) 

1.3 
(1.0  1.6) 

 Uncond. 14.7 
(13.7  15.7) 

4.3 
(3.8  4.8) 

2.1 
(1.7  2.4) 

4.5 
(4.0  5.0) 

2.4 
(2.1  2.8) 

1.4 
(1.1  1.7) 



 

 

Figure 3. Frequencies of dry (left) and wet (right) intervals with various lengths as derived from 
observation and from generated time series (with conditional and unconditional model) at the Bucharest 
station (winter). The results are obtained for the independent data set over the interval 1950-1999 with the 
model fitted over the interval 1901-1999 as ensemble means over 1000 experiments. The last column for 
the dry intervals refers to lengths greater than 15 days.  
 
4. Conclusions 

The performance of the conditional stochastic model presented in this paper is analyzed 
in two steps. Firstly, the skill of the CCA model in estimation of the four precipitation distribution 
parameters is assessed. Secondly, the performance of the conditional stochastic model to 
reproduce the statistical features of generated precipitation time series is analyzed. In order to 
see the advantage of the conditional model, it is compared to the unconditional model based 
only on a Markov chain with the four parameters computed directly from observations. Both 
stochastic models have been run 1000 times and the precipitation distribution parameters are 
computed as ensemble means with their associated 90% confidence intervals. The skill of both 
stochastic models is computed for the two subintervals, which have not been used for fitting the 
models. The main conclusions, which can be drawn from this analysis, are summarized in the 
following. 

The CCA model is most skillful for winter and autumn (transition probabilities), slightly 
skillful for the mean amount for rainy days µµµµ (winter, especially for 1951-1999 interval) and 
unskillful for the shape parameter k. This result is in agreement with previous studies (Busuioc 
and von Storch, 1996; Busuioc et al, 1999) when the connection between seasonal precipitation 
amount at 14 Romanian stations (including Bucharest) and the large-scale circulation was 
analyzed. The unexpected low skill for daily mean precipitation µµµµ, found in the present paper, 
suggests that the strong link of the seasonal precipitation (winter and autumn) with the SLP field 
is given by the strong link between number of rainy days and SLP, a fact supported by the direct 
correlation between them. The results presented above also suggest the fact that the shape 
parameter of precipitation distribution (k) does not depend on the large-scale circulation. One 
reason of the model failure regarding µµµµ and k could be that the two subintervals have different 
statistics of precipitation in Bucharest, i.e., two different precipitation regimes. The urbanization 
could be one reason for this behavior, but it is difficult to separate it from the natural variability, 
since daily precipitation time series as long as for Bucharest station are not available for other 
stations in Romania or on.  

The conditional and unconditional stochastic models were found to be similarly skillful in 
reproducing the statistical properties of precipitation, except for the trend, which by construction 
only the conditional model can deal with. Thus, for climate change applications only the 
conditional model is useful.  

Some statistical features were well reproduced by both stochastic models for all seasons, 
such as: the mean and expected maximum duration of wet intervals; the daily mean of 
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precipitation for rainy days; the expected maximum duration of dry intervals; the frequency of 
days with precipitation amount greater than 20 mm for 1901-1999 interval.  

Other statistical features of the generated precipitation time series are only partially 
reproduced by both models or are better reproduced by one of models such as:  

• the mean duration of dry intervals for winter and summer (1901-1949) and autumn 
(1950-1999) are well reproduced by both models; in the other cases both models, except for 
spring when the unconditional model is better, overestimate the observed values;  

• the standard deviation is better estimated for the 1901-1949 interval, except for 
summer when it is underestimated; for the 1951-1999 interval the standard deviation is slightly 
underestimated for all seasons (less for summer); 

• the expected maximum daily precipitation is generally underestimated for all seasons 
(both models) but the observed values are covered by the 90% confidence intervals, except for 
summer (1901-1949), winter and autumn (1950-1999);  

• the frequency of the wet intervals (winter and autumn) and frequency of the extreme 
dry events (winter and autumn) are well reproduced; in the rest of cases, generally, the 
frequency of shorter dry intervals is underestimated and the longer dry intervals (grater than 9 
days) are too frequent.  

• the seasonal mean of rainy days is generally well reproduced by both stochastic 
models, except for spring and autumn when it is underestimated by the conditional model and 
overestimated by the unconditional model; 

• the linear trend of the winter precipitation is well identified but the increase in 1901-
1949 is underestimated and the decrease in 1950-1999 is overestimated. 

In conclusion, the conditional stochastic model presented in this paper can be 
successfully used to generate daily precipitation time series especially for winter and autumn. 
This model has the advantage compared to the unconditional model to capture the changes in 
the local seasonal precipitation induced by changes in the large-scale circulation, represented 
by the SLP field that makes it useful for climate change scenarios based on GCM outputs 
(especially for transient version). This model can be improved (especially for spring and summer 
seasons) adding other large-scale parameters. The moisture variables could be important large-
scale predictors but unfortunately they are not available for long time series. The NCEP 
reanalysis are only available since 1948. For climate change scenarios this problem could be 
solved by developing such kind of conditional stochastic models over shorter interval and by 
using the cross-validation procedure.  
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