Flood propagation on Lapus river using an extended Muskingum Model
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Abstract: The classic Muskingum model can be interpreted as a multiple linear-correlation. This observation is used to develop a more complex linear relationship for long reaches for which usually a repeated propagation is performed. The extended form of the Muskingum model was applied on a reach of more than 60 km of Lapus river receiving 2 important tributaries. Four historical floods (1993, 1995, 200 and 2001) were used for model calibration and validation. The obtained results prove that this model can represent a good alternative to a successive numerical run of the classic Muskingum model. 

Keywords: flood wave propagation, multiple linear-correlation, lag terms.

Zusammenfassung: Das klassische Muskingum Modell kann als mehrfache Linearwechselbeziehung gedeutet werden. Diese Beobachtung wird verwendet, um ein komplizierteres lineares Verhältnis für lange Reichweiten zu entwickeln, für die normalerweise eine wiederholte Ausbreitung durchgeführt wird. Die ausgedehnte Form des Muskingum Modells wurde auf einer Reichweite von mehr als 60 Kilometern von Lapus Fluß 2 wichtige Steuerbare empfangend angewendet. Vier historische Fluten (1993, 1995, 200 and 2001) wurden für vorbildliche Kalibrierung benutzt. Die erreichten Resultate prüfen, daß dieses Modell eine gute Alternative zu einem aufeinanderfolgenden numerischen Durchlauf des klassischen Muskingum Modells darstellen kann.

1. Introduction 

The classic Muskingum model expresses the downstream discharge 
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as a convex linear combination of the upstream discharges 
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The coefficients 
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 are non-negative: 
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and their sum, like in any convex linear combination is equal to the unity. The coefficients 
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 depend on the propagation time 
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on the considered reach, on the time step 
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 and on the attenuation coefficient 
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. In order to ensure the computation stability the parameter 
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must observe some constraints, which equivalent is a polygon of the admissible solutions (Musy, 1998). A similar polygon can be obtained for the coefficients 
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In many practical situations, the distance between two successive hydrometric stations where accurate hydrographs are available is quite large, while for a good approximation of the increasing limb of the hydrograph a small time step is necessary. As a result, the ratio 
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is small, the parameters being out of the admissible domain for the usual values of
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. 

The most common solution in this case is to divide the river reach into a number of sub-sectors, resulting an increased ratio
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for each sub-reach, and re-entering thus in the domain of the admissible solutions. Still, at the end of each sub-reach the real hydrograph is not known; in these conditions, the coefficients 
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 of the equation (1) cannot be validated for every sub-reach, having thus average values for the considered reach. 

Another solution is to derive analytically the downstream hydrograph as a function of the upstream hydrograph taking into accounts the modifications of the hydrograph along the reach. 

2. Presentation of the mathematical model (Drobot, 2003)
For the beginning, two sub-reaches for the flood wave propagation will be considered. The downstream discharge 
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 at the end of the first sub-reach, according to the relation (1) is:
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where 
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 are the discharges weight for the first sub-reach.

Using the same relation, the downstream discharge 
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can be written as:
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or taking into account the relation (3 2) one obtains (Drobot and Moldovan, 1996):
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For a river reach decomposed into 3 sub-reaches, the downstream discharge 
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at the end of the 3rd sub-reach is obtained with a similar relation:
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By generalization, the discharge 
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 at the end of the nth sub-reach, or what is the same thing the discharge 
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at the end of the reach, is: 
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One notices that for 
[image: image35.wmf]1

=

n

, the relation (6) is identical to the relation (1) used for 1 reach. If the number of sub-reaches in which a reach is decomposed is too large, the first coefficients in the relation (6) will result negative. This means that on long reaches the influence of the current or immediately previous discharges from the upstream end is not transmitted during the current time step at the downstream end. As a result, in such cases the corresponding coefficients will be taken null, and the relation (6) becomes:
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where 
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 and 
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 is the upstream, respectively the downstream discharge; 
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is a lag index, introduced to take into account the fact that the first 
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 coefficients are null.

A similar relation is obtained when along the examined sector tributaries occur; additional terms having the general expression 
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is the tributary discharge, will be introduced; of course, the lag index 
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of the tributary will be smaller than the index 
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of the main river:  
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For only one tributary, the relation (7) becomes thus:
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By generalization, for 
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tributaries the previous relation is written as:
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3. Calibration of the parameters 

The relation (8) as well as the relation (1) can be interpreted as a multiple linear correlation, whose coefficients are obtained using the least square method. In the case of one sector, the objective function is:
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where 
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is the number of the measured discharges.

For the optimal configuration of the parameters, the objective function is minimum, meaning that:
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If this statement is true for the index 
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, it is true for the moment 
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This approximation is convenient in the objective function (10) in order to avoid recursive formulations of the downstream discharge (Drobot, 1987). As a result, by replacing 
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, the relation (10) becomes:
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A similar formulation to (13) can be obtained in the case of a reach decomposed in 
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sub-reaches:
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to which the following constraints are normally added:


[image: image60.wmf]0

0

1

1

1

³

³

@

+

+

=

+

>

=

å

n

n

,

k

j

,

j

n

n

j

i

k

j

j

C

;

C

C

C

                                               (15)

Theoretically, the sum of the weighting coefficients should be equal to unity. This constraint can be relaxed in order to take implicitly into account the discharges due to the rest of the basins, which are not measured. At the limit it can be totally suppressed.


Similar expressions to (14) and (15) can be obtained if the river receives tributaries along the considered reach.

4. Flood propagation on Lapus river.


The topological model of Lapus river between the stations Razoare and Lapusel is presented in Figure 1 (Stanescu et al, 2003). 
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Figure 1.  Topological model of Lapus river basin (Stanescu et al, 2003).


On this sector of about 65 km, Lapus river receives as main tributary Cavnic river. In the same time, the rest of the basin between the upstream and downstream ends of the reach is contributing to the downstream flood wave. This distributed unknown flood contribution was not taken explicitly into consideration, but it will intervene implicitly through the weight coefficients. Finally, Sasar river which is a tributary of Lapus river having the confluence downstream Lapusel, was also introduced as an input due to the fact that the downstream levels influence the discharges at Lapusel (Stanescu et al, 2003). Thus, the discharges measured at the following stations were considered: 

· Razoare and Lapusel on Lapus river;

· Copalnic on Cavnic river;

· Baia Mare on Sasar river.


The floods registered on the main river and on the tributaries that were considered for the parameters calibration and validation are showed in the figure 2. For 3 floods (1993, 1995 and 2001 years) the travel time between Razoare and Lapusel is 8 hours, while for the 4th flood (2000 year) it is only 6 hours.  


The following strategy was adopted for parameters calibration and validation:

A. The model equation (number of terms, lag value) and the model parameters were determined for each flood. In fact two models were obtained: the first model for the floods produced in 1993, 1995 and 2001 and the second model for the 2000 flood.

The first model has the general form: 
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where: 
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is the downstream discharge on Lapus river (section Lapusel) at the moment i;



[image: image64.wmf]R

i

Q

8

-

  -  the upstream discharge (Razoare section) at the moment 
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[image: image67.wmf]S

i

T

4

-

-  the discharge due to the Sasar tributary  at the moment i – 4.
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Figure 2.  Floods considered for calibration and validation (Stanescu et al, 2003).



For example, the flood registered in 1993 (Figure 3) is modelled by the next equation:
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Figure 3.  Modelling the flood registered in 1993


A comparison between the coefficients obtained for the floods occurred in 1993, 1995 and 2001 is presented in the Table 1. One notices that the coefficients present important variations from one flood to another. Thus either one obtains averaged coefficients considering all floods for calibration, or the “best” flood whose coefficients lead to a good propagation of all the other floods has to be identified.

Table 1 – Coefficients obtained after calibration


1993
1995
2001
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To simplify the presentation, in the following figures only the measured and the computed downstream discharges for the different floods are presented. In the Figure 4 the results of the individual calibrations are represented. 
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Figure 4.  Computed and measured downstream discharge (1993, 1995 and 2001)

The second model obtained for the flood registered in 2000 (Figure 5) is: 
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or after replacing the coefficients:
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Figure 5.  Computed and measured downstream discharge (2000).

In this case, one obtained a different model due to the different origin of this flood. While the floods from 1993, 1995 and 2001 were winter floods produced in the conditions of existence of ice in the river, the 2000 flood was in springtime.  In the same time, the rain in 2000 occurred from upstream part of the basin to the downstream, while in the previous cases the rain moved from downstream part of the basin to the upstream part. These features explain the fact that the lag coefficient is smaller for the upstream inflow than for the two tributaries.

B. For the first model, the parameters of any individual flood were tested for the all the other floods, identifying thus the most suitable parameters to be used for future flood wave propagation. This operation represented in fact the model and parameters validation. Due to the lack of floods having the same genesis, the second model could not be validated.


The better agreement between the measured and the computed floods was obtained for the calibrated parameters of 1995 flood (Figure 6).
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Figure 6.  Agreement between measured and computed flood waves 

using the parameters calibrated for 1995 flood.


On the contrary, the same model and parameters lead to an important discrepancy for 2000 flood (Figure 7), which have other genesis. Even the second model could not be calibrated, it represents an interesting alternative to be used when the rain in the basin is moving from upper to the lower part of the basin. 
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Figure 7.  Inadequacy of 1995 model and parameters for 2000 flood 

5. Conclusion

The obtained results prove that this model, based on a theoretical run between the upstream and the downstream ends of a long reach, receiving important tributaries can represent a good alternative to a successive numerical run of the classic model that has no confirmation of its validity on intermediate points.


The most difficult issue in this extended Muskingum model is the evaluation of the lag factors and the values of the parameters. Once determined a model for a previous flood, the model can be used for quick and reliable flood wave propagation if the flood genesis is the same as in the basic model. When the flood genesis changes, a new model must be identified; the validation of this new model depends on the occurrence in the future of floods having similar genesis.  As a result of different calibrations a set of models is expected to be obtained; the use of one or other of these models have then to be tested in real time.
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