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Abstract: Development  of  daily  precipitation  models  for  some  sites  in  Bulgaria  is
considered. The precipitation processes is modeled as a two-state first-order non-stationary
Markov model. Both the probability of rainfall occurrence and intensity are allowed to depend
on  the  intensity  on  the  preceding  day.  A  synthesis  of  the  methodology  presented  in
Grunwald and Jones (2000) and the idea behind the classical running windows technique for
data smoothing are used to investigate the existence of long-term trend and of changes in
the pattern of seasonal variation. The resulting time series of model parameters are used to
quantify changes in the precipitation process over the territory of Bulgaria.
Keywords: Binary time series, gamma time series, generalized linear models, Markov chain,
rainfall modeling.

1. Introduction
We consider development of daily precipitation models for  some sites in Bulgaria.

The precipitation process is described as a two-state first-order Markov chain, which has
been found to be an adequate model in many different regions. Details can be found in Coe
and Stern (1982), Katz (1977), Stern and Coe (1984), Woolhiser (1992), and Zucchini et al
(2001a). Finite Fourier series are used to approximate the seasonal cycle in the probability of
rainfall occurrence and in the parameters of the intensity (amount when it rains) distribution.
The resulting generalized linear models (GLMs) (McCullagh and Nelder, 1989) can be fitted
using  standard  software.  A  good  overview  concerning  daily  precipitation  modeling
techniques is given in Woolhiser (1992).

The methodology developed in Stern and Coe (1984) is designed to describe the
daily rainfall process under the assumption that there have been no changes in the process,
i.e.,  that there are no long-term trend and that the seasonal pattern remains the same in
each year. Furthermore their analysis is based on that the probability of rain occurring on a
given day depends only whether it  was wet or  dry on the preceding day.  However,  it  is
plausible that this probability also depends on how much it rained on the previous day. The
dependency  on  the  previous  intensities  simultaneously  in  the  occurrence  and  intensity
models was studied for the first time in Grunwald and Jones (2000). Moreover, apart from
seasonal--  and  temporal--dependence  effects,  some  slowly-varying  trend  function  (linear
spline with unknown knots) over the years were considered in Chandler and Wheater (1998),
and Grunwald and Jones (2000)  using GLMs, which are able  to accommodate the high
variability present in the data.

In order to analyze not only the long-term changes (slowly-varying trend, temporal
variation)  but  also  the changes of  the  seasonal  variation pattern  Zucchini  et  al.  (2001b)
propose a synthesis between the methodology presented in Grunwald and Jones (2000) and
the basic idea behind the classical running windows technique for data smoothing, that is to
estimate the parameters of the model for each year using only the data from a symmetric
''window'' of neighboring years. The neighborhoods are necessarily asymmetric at the start
and at the end of the rainfall record. In this way the model is fitted for each year separately
using only the 365m observations from it's corresponding window of length m years. Thus,
for example, the data used to model the rainfall occurrences for a given year data comprise
365m Bernoulli (wet day or dry day) observations; the covariates are day of the year and the
rainfall  intensities  on the  previous  day.  Logistic  regression  is  used to  fit  these  Bernoulli
(binary) data.

The  aim  of  the  paper  is  to  demonstrate  the  statistical  technique  developed  in
Zucchini et al. (2001a) for the detection of precipitation climate changes over the territory of
Bulgaria and to quantify these changes. 



2. Description of the daily precipitation model
Let  St be a nonnegative random variable denoting the precipitation amount at day

t=1,2,…,n, and  st be its observed value.  The stochastic process  St is  referred to  as the
amount process. The distribution of St is assumed to be a mixture of a discrete component
at  st=0 and  a  continuous  component  for  st>0.  Denote  by  ft(s|Xt=xt) the  transition  mixed
density of  St, where  Xt is a vector of covariates (explanatory variables) including  St-1. It is
convenient to express the density of  St in an explicit form by the so-called occurrence and
intensity processes introduced by Katz (1977), and Stern and Coe (1984). 

The occurrence process is a binary (Bernoulli) process Jt defined as Jt =1 if St>0 and
Jt=0 otherwise. Denote by w

t = )1Pr( tJ  and )( t
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conditional binary distribution of  the process  tJ ,  where a vector of  possible covariates is
T
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The intensity process is defined to be Zt=St when St>0 and missing otherwise. Let the

intensity process Zt have a positively skewed continuous conditional distribution with density
qt(z|Xt) for  z>0 and  0 otherwise.  Common  assumptions  for  the  density  qt(z|Xt) are
exponential, lognormal, Weibull or Gamma.

Therefore  the  transition  distribution  of  precipitation  amount  St under  the  above
assumptions is a mixture of the occurrence and intensity distribution
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where  δo(st) is the Dirac delta function with zero support as Grunwald and Jones (2000).
Inference about St can be done provided ft(st|Xt=xt) and qt(zt|xt) are known. For instance, the
expressions for the conditional expectation and variance of St are given by
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Special  interest  is  the  unconditional  mean  ),...,|( ,,11 tpktpkttt xXxXSE    and
variance  ),...,|( ,,11 tpktpkttt xXxXSVar   .  These  quantities  are  difficult  to  calculate
analytically from the fitted  model because they require integration.  However,  this can be
overcome by simulations, i.e., 5000 synthetic precipitation sample paths can be performed
from the model and then by simply averaging over the generated sequences, that is treating
the generated sequences as it were a very long real precipitation.

In this study we will restrict the covariate vector Xt to account only the previous states
of  the  occurrence  process  Jt-1 and  the  precipitation  total  St-1 if  it  is  wet  and  thus

),( 11  ttt SJX .  However,  more  complicated  models  involving  appropriate  meteorological
variables could be considered.

2.1.The occurrence model
Let  dw
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chain transition probabilities of a wet period following a dry period, and a wet period following
a wet period, respectively. Having the information about the previous state of the occurrence
process and using arguments based on the total probability we can express the probability
for a wet state at moment t as follow
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Under the plausible assumption that w
t  w

t 1  for any t, an appropriate expression about the
probability of wet day is given by
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However, we would like to account in the probability of the occurrence process not
only the previous states but the precipitation total St-1 as well. Thus instead of the term ww

t
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transition probability of a wet period following a wet period, conditional of the previous period
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different data sets. In case of )( 1
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t s , t=1,…,n as the state of the previous moment is wet,
the  data  are  regarded  as  n binary  observations,  indexed  by  the  day,  year  and  the
corresponding precipitation totals on the previous moment. In the case of dw

t
| , t=1,…,n as

the state of the previous moment is dry, the data are regarded as  n binary observations,
indexed by the day and year.

In  order  to  model  these  two  posterior  probabilities,  Stern  and  Coe  (1984),  and
Grunwald and Jones (2000), and Zucchini et al. (2001) used the logit link function
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In  the above expression ‘*’  means w|w or  w|d.  The function  u(t,xt) should be a periodic
parametric  function,  approximately  sinusoidal  in  shape,  that  links  the  covariates  and the
unknown parameters in order to account for various hourly, daily, seasonal and long-term
temporal effects. Thus it should be composed of daily and seasonal terms that repeat each
year and represent  a 'typical'  year,  and a remainder term that  represents deviation from
these regular patterns. We use the following functions about daily models
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where m denotes the number of harmonics for the model term. In place of the square root
another smooth function of st, e.g, logarithm, a cubic root, or power transformation could be
used.

The  corresponding  sets  of  unknown  parameters  10 , , 122 ,..., m  for  both
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t stu  can be estimated by the maximum likelihood method,
i.e., maximization of the likelihood function of the observed values given by
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2.2. The Intensity Models
The distribution of precipitation depths on wet period is positively skewed (i.e. smaller

amounts  occurring  more  frequently  than  the  larger  amounts),  and  exhibits  the  same
seasonal variability as found with the precipitation probabilities. To account this the simplest
solution is to fit a family of distributions and then to allow the parameters to vary over the
days (respectively year, if daily precipitation model is considered), where these parameters
are expressed in terms of  their Fourier series approximation.  This technique of modeling
precipitation amounts  is widely accepted;  see Stern and Coe (1984),  Katz and Parlange
(1995), Grunwald and Jones (2000), and Zucchini, Neykov and Neytchev (2001a). In this
study we use the gamma probability density function given by
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where  Γ(.)  is  the  gamma  function,  μ is  the  mean  and  β is  the  shape  parameter.  The
conditional density function qt(z|Xt) is obtained under the appropriate reparametrisation of μ
and β. In order to ensure always a positive estimate of μ the log link function is used for the
mean of intensity model
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where  m denotes  the  number  of  harmonics  for  the  model  term.  Similarly  the  shape
parameter  β can be modeled in the same manner if  needed (see, Zucchini,  Neykov and
Neytchev, 2001a).



The unknown parameters 12210 ,...,,, m  and β can be estimated by the maximum
likelihood, i.e., maximization of the likelihood function of the observed values given by
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2.3. Computational aspects and model choice
Because the Bernoulli and Gamma distributions belong to the exponential family, the

estimates of the unknown parameters may be obtained by using the theory for estimation for
GLMs  (McCullagh  and  Nelder,  1989)  and  therefore  the  estimates  of  )),((|
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t xtu  and μ(t,xt). From computational point of view this approach is equivalent to a

direct maximization of the log-likelihood over the unknown parameters.
The Akaike  Information Criteria and Bayesian Information Criteria  can be used in

order to select the number of harmonics  m in the above models. Details can be found in
MacDonald and Zucchini (1997), and Zucchini et al. (2001a).

More general classes of link functions for the occurrence and intensity models can be
specified to satisfy various user requirements.

2.4. The amplitude-phase interpretation
The sine-cosine representation used in the rainfall model specification is convenient

for  computational  purposes,  but  for  interpretating  the  parameters,  or  for  comparing  the
parameters of different sites, the (equivalent) amplitude-phase representation is preferable.
For example the phase parameters indicate the time of year of maximum probability of rain,
or of maximum mean intensity; the amplitudes describe the maximum size of the seasonal
change  in  mean  intensity,  or  in  the  probability  of  rainfall.  The  intercepts  represent  the
average rainfall intensity, or the average probability of rain over the year.

3. Applications
Many different aspects of the precipitation process are of interest in meteorological

and hydrological  applications,  for  example the monthly, seasonal and annual means,  the
distribution  n-day  extreme  precipitation  totals,  the  expected  number  of  wet  days,  the
expected length of dry spells, and so on.

An important  feature  of  the  proposed model  is  that  it  can be applied to quantify
complex features of daily precipitation without special knowledge of the underlying statistical
theory. Once the model has been calibrated at a given site one uses it to generate long
sequences of artificial precipitation for that site. These sequences can be used to estimate
any statistic, or probability, relating to precipitation event of interest in exactly the way one
would do so if a long sequence of real rainfall data were available. Furthermore, by using
appropriate adjustments that are considered in the next sections,  some properties of  the
process can be obtained approximately but directly from the model.

3.1. Seasonal adjustments
Because the transition probabilities of the amount process St depend on the intensity

of the previous day, the main findings and results of the well developed stationary theory of
chain-dependent  Markov  process  do  not  apply.  One  way  to  overcome  this  problem  of
dependence (approximately) is to replace the expressions )(|
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their expectations with respect of the preceding day amount, namely by ww
t
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respectively. Alternatively we can make the approximation that the transition probabilities of
occurrence dw

t
| and ww

t
| , and the intensity mean t  are roughly constant over a short T-

day  period  of  time,  e.g.  week,  month  or,  in  some  cases,  even  season.  Taking  the
expectation over a T-day period of time the corresponding transition probabilities  dw

t
| and
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| ,  and  the  intensity  t  of  a  stationary  two-state  first-order  Markov  chain  can  be
determined using a fixed point algorithm such as the following:
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where  the  hats  indicate  parameter  estimates  of  the  daily  rainfall  model  fitted  using
observations in the relevant (running) window; l(.)  is logit  link function and  i is the current
iteration number. Starting with  )0(  equal to the mean daily precipitation (approximately 2
mm) convergence is reached in about 3 iterations.

The annual period of time can be treated similarly because the expectations ww ss ,
and s  equal to zero over a year and thus the above technique reduces to the seasonal
adjustment.

For a given T-day period of  time this procedure is repeated for  each year in the
rainfall record; the output of the running windows technique comprises four time series of the
estimates w , ww| , dw|  and   which can be used for further analysis.

3.2. Monthly, seasonal, annual and extreme statistics
Having  the  quantities  outlined  in  the  previous  subsection,  the  methodology

concerning the monthly, seasonal, annual and maximum precipitation can now be applied
(Katz and Parlange, 1998). Recall that the number of wet days  
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Therefore,  the  expected  number  of  rainy  days,  the  total  precipitation  amount  and  their
variances over a T-day time period are given by
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4. Assessment of the effects of climate change
In  order  to  assess  the  effect  of  climate  change  on  the  precipitation  the  running

windows technique is applied, i.e., the time series of estimates are produced for each gauge.
The series comprise intercepts, amplitudes, phases for the model parameters and also the
deviances.  For  the  purpose  of  exploring  this  series,  an  appropriate  graphical  technique
based on the R environment, was developed.

The  plots  in  Figures  1,  2  and  3  show the  time  series  of  the  model  parameter
estimates at the Plovdiv gauge. They are based on 5-year running windows. The continuous
lines shown are the lowess smoother of the data presented in the subplots.



A formal goodness-of-fit test on the fitted model can be carried out using the fact that
(under the hypothesis) the relevant deviance for the linear logistic model for each running
window is approximately equal to its degrees of freedom, i.e., the ratios of the deviances to
their degrees of freedom are approximately equal to one.

The  plots  exhibit  long-term  trends  as  well  as  changes  of  the  seasonal  variation
patterns. However, the visual inspection alone is not sufficient for identifying changes in the
parameter estimates series.  Thus a modification of  the Mann-Whitney test  (Pettitt,  1979)
was  used  to  detect  the  years  of  changes.  In  all  the  subplots  the  sub-intervals  means
determined by the change-point technique are marked. A significant level of α=0.05% was
used. The results of these tests provide evidence that change-points did indeed occur in the
period considered.

Figure 4 refers to May precipitation characteristics at Plovdiv. The plots are based on
a 5-year  running window. The top left-hand window in each case is  a scatterplot  of  the
observed rainfall amounts against the corresponding expected amount under the model. The
term "relative error"  in the legend is the  average ratio  of  the observed and to expected
rainfall  amounts.  The  subplots  entitled  "Rainfall  Probability",  "Rainfall  Intensity"  and
"Expected Amount" correspond to the estimates of the basic rainfall model elements w , 

and  w  respectively, and the values of which are marked as by small circles.
Figure 5 is analogous to Figure 4 but refers to annual precipitation. Correspondingly

the headings of the plots are prefixed with the words "seasonally adjusted". The rainfall data
amounts in the subplots "Observed and Expected Amount" are marked as small circles.

Figures 1 to 5 illustrate the nature of the changes in the rainfall  process over the
period  of  observations.  Interesting  (Figure  5)  is  the  indication  that  seasonally  adjusted
rainfall intensity decreased in the 1930's (and possibly again in around 1990) whereas the
seasonally adjusted probability increased in the 1930's but there is a hint that it is gradually
decreasing again. Until recent times these two (opposing) features compensated each other
so that  the seasonally adjusted expected amount was approximately constant  until  about
1980.

5. Conclusions and prospects for future research.
Stochastic  daily  rainfall  models  have  a  long  history  and  have  been  successfully

applied in many parts of the world. The main advantage that they offer is that, via simulation,
they can be used to estimate  any aspect of the daily precipitation process, no matter how
complex. In most applications they have been fitted under the assumption that the process
has not changed, i.e. that there were no trends and that the seasonal pattern has remained
unchanged and (if one wishes to base decisions on the model) that it will remain unchanged.
However it is becoming increasingly apparent that such an assumption cannot be taken for
granted. Our analysis provides a case in point. The technique outlined in this paper is to fit a
daily model in a running window of observations. This enables one not only to detect the
existence changes but also to quantify such changes in terms of the model parameters, and
hence to arbitrary properties of the process.
Of course such a model does not enable us to forecast the future behavior of the process.
One  possible  way  doing  that  would  be  to  identify  an  appropriately  strong  relationship
between the model parameters and some indicator  for  which long-term forecasts  can be
made, perhaps global temperature or atmospheric circulation patterns. Nevertheless for the
present  one can use of  the  model  as  a  mechanism to  generate  "scenarios".  Under  the
stationarity assumption very dry (or very wet) years are regarded as extreme observations
from  the  model.  If  one  relaxes  the  assumption  of  stationarity  then  such  years  can  be
regarded  as  "normal"  years in  a dry (or  wet)  period.  One  can use the estimates  of  the
parameters from such periods in the historical record to assess the properties of the process
under a dry (or a wet) scenario.



Figure 1. dw
t

|  model estimates for gauge Plovdiv based on 5-years window.
The means of the sub-interval, determined by the change points are marked.



Figure 2. ww
t

|  model estimates for gauge Plovdiv based on 5-years window.
The means of the sub-interval, determined by the change points are marked.



Figure 3. t  model estimates for gauge Plovdiv based on 5-years window.
The means of the sub-interval, determined by the change points are marked.



Figure 4. Monthly (May) model precipitation total for gauge Plovdiv



Figure 5. Annual model precipitation total for gauge Plovdiv
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