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Abstract: A discrete version of the Kalinin-Milyukov-Nash-cascade is formulated for operational
forecasting  of  stream  stages  when  no  information  of  rating  curves  is  available.  Model
performance is slightly reduced in comparison to flow routing results  using accurate,  single-
valued  stage-discharge  relationships.  However,  when  only  inaccurate  rating  curves  are
available, the present approach may yield superior forecasts. Since in practice the accuracy of
the employed rating curves, used to convert stage measurements into discharge values for flow
routing, may somewhat be uncertain, application of the present technique is recommended for
rating-curve verification. The method allows for  stage predictions using physically-based flow
routing in rivers where flow rates are unknown or the available rating curves are inaccurate. The
technique can also be used without modification for streams with tributaries.
Keywords: stream-flow, flow routing, forecasting, hydrologic model, rating curve.

FLOW ROUTING MIT UNBEKANNTEN SCHLÜSSELKURVEN

Zusammenfassung: Es wurde eine diskrete Version der Kalinin-Milyukow-Nash-Kaskade für
die  operative  Wassetrstandsvorhersage  in  solchen  Fällen  entwickelt,  in  welchen  keine
Information  über  die  Schlüsselkurven  zur  Verfügung  steht.  Die  Wirksamkeit  dieses
Vorhersagemodells ist in bißchen geringer, als in dem  Falle, wenn eine genaue und eindeutige
Schlüsselkurve verwendet werden kann, doch ist sie wesentlich höher, als wenn nur ungenaue
Schlüsselkurven zur Verfügung stehen. Da es jedoch in der Praxis oft vorkommt, daß bei der
Anwendung der Methode  flow routing die zur Konversion zwischen Wasserstand und Abfluß
herangezogenen Schlüsselkurven mehr oder weniger ungenau sind, kann die Anwendung der
hier vorgeführten Methode auch zur Verifizierung der Schlüsselkurven empfohlen werden. Die
Methode ermöglicht  nämlich  eine Wasserstands-Vorhersage  über  ein  physisch begründetes
flow  routing,  falls  die  Abflußwerte  unbekannt  oder  die  zur  Verfügung  stehenden
Schlüsselkurven  ungenau  sind.  Das  vorgeschlagene  Verfahren  kann,  ohne  irgendeine
Abänderung, auch für Flußstrecken mit Nebenflüssen verwendet werden.
Schlüsselworte:  flow routing, Vorhersage, hydrologische Model, Schlüsselkurve.

1. Model description

The linear storage equation results if one assumes that the exponent () is the same in
the functional relationships between outflow rate (Q) and stage as well as between water stored
(S) in a channel reach and stage 

 (1)

where H[L] is the measured value of stage above or below datum, and c1[L3-T-1], c2[L3-] and 
[L]are constants. Dividing Eq. (1a) by (1b) yields 



                                     

(2)              
Inserting Eqs. (1a), (1b), and (2) into the lumped continuity equation

                                           
(3)

where u is inflow rate, results in 

(4)
where the subscripts 1 and 2 refer to the up- and downstream ends of the channel reach, and c3

[L3-T-1],  b[L], and  are constants of the stage-discharge relationship of the upstream location.
By rearranging Eq. (4) one obtains 

(5)
which shows that  in general  the future outflow rate of  the reach is determined by a certain
combination of in- and outflow rates through the last term of the righ-hand-side of the equation.
However, by assuming that both exponents are unity, Eq. (5) simplifies into 

(6a)
where c=c3/c2[T-1], and c4[LT-1] are just another constants. The constant multiplier of H1 and an
additional constant value in Eq. (6a) are of no concern because linearity of the equation assures
that the output of the reach is proportional to any constant multiplier in the input values, and the
presence of  a constant  input  means only an additional constant  value in the output  values.
Because of  the  arbitrary  reference  points  in  the  stage  measurements  of  differing  locations,
routed upstream stage values have to be scaled up or down any way to match the measured
downstream stage values, thus the presence of a constant multiplier (and an extra constant) in
the  input  stage  values  means  only  an  additional  multiplication  in  the  scaling  process,
consequently they can be chosen arbitrarily. This way Eq. (6a) can be written as 

(6b)
which now is of the same form as Eq. (3) of the Kalinin-Milyukov-Nash-cascade (Kalinin and
Milyukov,  1957;  Nash,  1957).  The  reason that  the  required  scaling  is  not  a  linear  function
eventually stems from the general nonlinear shape of the rating curves while in the derivation of
Eq. (6b) linear rating curves were employed. The required scaling of routed to observed stage
values can be achieved by the application of a polynomial curve fitting in the form of 

(7)
where SCH 2

ˆ  is the scaled, 2Ĥ  is the original model estimate of the downstream stage value, and
the pi-s[Li-m] are the constant coefficients of the polynomial of a predefined order m. 



With  these considerations  the  solution  of  the  KMN-cascade model  can be applied.  Szilágyi
(2003)  derived  the  solution  for  a  sample-data  system  which  implies  that  the  stage
measurements are available only at discrete time intervals (t) with an assumed linear change
in the values between consecutive discrete samples.  Applying the solution to Eq.  (6b) over  n
serially connected subreaches one obtains 

(8)
where the vector H comprises of the modeled stage values of the n subreaches, the (t) state-
transition matrix, and the 1(t) and 2(t) input-transition vectors are defined as (Szilágyi, 2003)

(9)

(10)
and 

(11)
The output equation now becomes 

(12)



the term on the left-hand-side being the input to Eq. (7). For channel reaches with tributaries,
stages are routed separately between up- and downstream stations on the main channel and
the upstream station of each tributary and the downstream station of the main channel due to
linearity of the KMN-cascade, before inserting the  jH 2

ˆ (t) (j=1,…,T+1), where T is the number
of  tributaries within the reach) values into Eq.  (7).  Then the  pi (i=1,…,m) coefficients of  the
polynomial become vector-valued.

Figure 1.  Map of Central Danube Basin

2. Model application and conclusions 
The above model was tested on three rivers in Hungary: the Danube, its tributary, the

Tisza River,  and a tributary of  the Tisza,  the Maros River.  See Table 1 for  a list  of  gaging
stations with corresponding drainage areas and mean channel slopes and see Figure 1 for a
map of the mentioned area. 

Table 1. Stream reaches used in the study with corresponding reach lengths L[km], average
channel slopes I[%], as well as drainage areas D[km2] belonging to the downstream stations.

L (km) D (km2) I (%)
Nagymaros - Budapest 48.1 184.893 0.0071
Budapest - Dunaújváros 65.9 188.273 0.0090



Budapest - Paks 115.2 189.092 0.0091
Paks – Baja 52.6 208.282 0.0065

Baja - Mohács 31.8 209.064 0.0058
Tiszabercel - Tokaj 25.9 49.849 0.0096
Sárospatak - Tokaj 37.1 13.000 0.0114

Arad – Makó 72.7 30.149 0.0057
*Drainage area of the tributary (Bodrog) above the confluence

Model  results  were  compared  with  that  of  an  operative,  real-time  hydrological  forecasting
version  of  the  KMN-cascade  using  actual  rating-curve-derived  discharge  values.  The
operational model uses a time-step of t=12 hours and employs a multilinear approach (Becker
and Kundzewicz, 1987; Szolgay, 1991) where discharges are routed through parallel cascades
of linear storages representing low-, and mean-flow channel as well as flood conditions over the
floodplain, thus creating a nonlinear model. The operative model has 3 x 2 = 6 (n and k values
for each three cascades) parameters, plus a one-step autoregressive coefficient for prediction
error updating while the proposed model has two, plus one autoregressive (ar), parameters and
is run with a time-step of t=24 hours. To assure identical input values for model performance
comparisons,  the  new  model  uses  forecasted  stage  values  of  a  lead-time  of  24  hours,
calculated  by  the  operative  model  for  the  upstream  stations.  Both  models  were  run  in  a
continuous error-updating mode, which means that each forecast value is modified by a certain
percentage (given by the value of the autoregressive parameter) of the previous day's model
error prior to error updating. 

Parameters  of  the  proposed model  were optimized with  two years  of  data  from the
period January 1, 2000 - December 31, 2001.  Model results,  using the optimized parameter
values,  were  compared  with  operative  model  outputs  for  the  period  January  1,  2002  -
September 18, 2003. Model performance was assessed by two statistics: the mean root-square
error () and a Nash-Sutcliffe-type efficiency coefficient (NSC) which is defined as 
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where iĤ  is the predicted, and  Hi the observed stage value on day  i. The closer is the  NSC
value to 100% the better are the predictions.  Note that the NSC value may be negative when
the forecasts are worse than the naive prediction (see denominator),  which takes the stage
value of the actual day as the one-day forecast. Table 2 lists the optimized model parameter
values. 

Table 2. Optimized model parameter values for different stream reaches.
K [1/day] n ar

Nagymaros - Budapest 11 4 0.2
Budapest - Dunaújváros 6.8 4 0.2

Budapest - Paks 3.9 4 0.6
Paks - Baja 3.2 2 0.8

Baja - Mohács 2.7 1 0.7
Tiszabercel -Tokaj 8.5 1 0.9



Sárospatak – Tokaj* 1.5 2
Arad – Makó 14.5 17 1.0

* The tributary (Bodrog) of the Tisza

Optimization of the n,  k and ar values of the proposed model was carried out by a systematic
trial-and-error search where trial values of the parameters were chosen from ever-decreasing
predefined ranges of the parameters with ever-increasing corresponding resolution terminating
at  a chosen set  resolution.  Parameters  of  the  nonlinear  regression  equation  (Eq.  [7])  were
obtained using the Matlab function "Nlinfit" for the multivariate case, and the function "Polyfit" for
the univariate case, both by prescribing a 3-rd order polynomial. 

Application of  assumed linear  rating  curves instead of  more realistic  measured ones
causes  the  curvature  of  the  best-fit  polynomial  at  large  values.  Such  a  systematic  error,
however, can be easily corrected via Eq. (7). Note that the first few forecast values may be off
mark, since modeling starts with an arbitrary zero initial value of the H vector. Consequently, the
first  four  forecast  values  were  left  out  from  all  subsequent  analysis.  Table  3  lists  the
performance statistics of the one-day model predictions for the two distinct periods. 
Based on Table 3 it can be stated that the proposed model has stable optimized parameter
values since model performance deteriorates only slightly between the two periods. During the
verification period there happened to be a major, but a relatively short-term (several days) water
release through a dam of the Tisza downstream of Tokaj which contributed to a large drop in
model efficiencies between the periods. 

In general,  physically-based models are expected to have more stable parameters in
time than so-called black-box models (Szöllősi-Nagy, 1989) and also more accurate forecasts
with increasing lead-times (Szöllősi-Nagy, 1989; Szilágyi, 1992). Because the former give some
insight (may that be very simplified) into the physical processes involved, temporal changes in
parameter values can often be linked to changes in the channel or floodplain conditions, such
as  conveyance.  Also,  model  transferability  of  physically-based  models  between  gaged  and
ungaged  basins is  typically better  than that  of  black-box models  (Nash and Sutcliffe,  1970)
simply because model parameter values can be linked to measurable basin properties.  In our
case, the ratio of optimized values of n and k yields the mean travel time of flow propagation for
the given reach. Since this latter is a function of channel properties mainly, initial guesses of the
n and k values for a new, ungaged stream can be obtained by using such information only. 

Overall, model performance of the proposed model is very similar to that of the operative
model. For certain stations (Budapest,  Baja, and Makó) the operative model  produces more
accurate predictions than the proposed model. This is what would normally be expected, since
the operative model uses extra information (i.e. known rating curves) for flow routing.



Table 3.  Performance statistics of the one-day ahead stage predictions.



Figure 2a.  Observed stages at Baja of the verification period versus unscaled one-day
forecasts

Figure 2b.  Observed stages at Baja of the verification period versus scaled one-day forecasts
without error updating

Figure 2c.  Observed stages at Baja of the verification period versus scaled one-day forecasts
with error updating

Scaling is based on historical data and corrects for the systematic difference between assumed
and real (but unknown) rating curves.

 One plausible explanation of  why the proposed model  may perform better  than the
operative one for other stations (Dunaújváros, Paks, and Tokaj) can be that for those stations
the rating curves may not be accurate enough or they may be outdated, i.e. they do not reflect
correctly the channel and flow conditions of the modeled periods. Suboptimal parameter values



(which could stem from a higher number of parameters to be optimized, i.e. 7 as opposed to 3)
in  case  of  the  operative  model  might  also  explain  its  underperformance,  but  it  is  unlikely
knowing that parameter values of the operative model are updated each day using information
from the previous 90 days (Szilágyi, 1992).  Here it should be emphasized that the proposed
model is not meant for replacing models that use measured rating-curve information. Whenever
reliable  rating  curves  are  available,  a  flow-rate  formulation,  i.e.  Eq.  (3),  should  always  be
preferred over a stage formulation, Eq. (6b). However, an additional (on top of flow rates) flow
routing using stages only, can detect inadequacies in the data required by the former. Naturally,
when no information of rating curves is available, the proposed model (or its variant, such as the
multilinear formulation) may easily be a proper candidate of a physically-based model to apply.
Szilágyi  (2004)  provides  an  exhaustive  list  of  the  advantages  of  applying  a  state-space
approach of  flow routing  over a numerical  solution of  the linear  kinematic  or  diffusion wave
equations  beyond the already-mentioned properties that  flow routing is a lumped parameter
approach while the kinematic and diffusion wave equations are distributed ones. 
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