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Abstract:  We  consider  methods  for  an  ascertainment  of  fractal  dimensions  of  some
hydrological variables. Specifically, we investigate the annual runoff for the Ukrainian rivers
and reveal scale invariance for  distribution of this variable by using statistical parameters
such as arithmetic average,  coefficients of  variation,  skewness, and auto-correlation. It  is
shown that  the fractal  dimensions for  the arithmetic average and coefficient  of  variations
amount to 1.72 and 1.63 respectively. The coefficients of skewness and auto-correlation are
related to the spatially uncorrelated variables. Temporal components of empirical orthogonal
function decomposition for the annual runoff are used to reveal properties of time invariance
for  the  annual  runoff.  The  first  components  of  decomposition  are  analyzed  and  its
connection with factors of creation for annual runoff is investigated. It is shown that first and
second components represent the large- scale atmospheric forcing of annual runoff creation.
The  time  part  of  first  component  describes  most  general  patterns  for  the  annual  runoff
fluctuations of Ukrainian rivers. Namely this variable is subject to the fractal analysis. Here
the variational function F2(s)  sH is used as a property of spatial-time variation for the annual
runoff (H is the exponent of scaling identical with the fractal dimension). It is determined that
H = 0.77 and this agrees to the hypothesis of Hurst's universal exponent.
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FRAKTALE MODELLIERUNG DER FRUSTRIERTEN WASSERFÜHRUNGENSSYSTEME: 
ANALYSE DES JAHRESABFLUSSES

Zusammenfassung:  Es wurden die Methoden der Feststellung der fraktalen Dimensionen
der hydrologischen Abmessungen betrachtet. Für die Bestimmung der Maßstabsinvarianz in
der Verteilung des Jahresabflusses der  Flüsse in der Ukraine wurde die Raumverteilung
seiner  statistischen  Parameter:  des  arithmetischen  Mittelwerts,  Variationsbeiwerts,  der
Asymmetrie  und  Autokorrelation  untersucht.  Es  wurde  angezeigt,  dass  die  fraktale
Dimension  des  arithmetischen  Mittelwerts  und  Variationsbeiwerts  1.72  und  1.63
(entsprechend)  bilden.  Der  Asymetrie-  und  Autokorrelationskoeffizient  wurden  auf   die
Anzahl der unkorrelierten im Raum bezogen. Für die Bestimmung der Eigenschaften der
temporalen Invarianz  des Jahresbaflusses wurden temporale Komponenten der Zerlegung
der  Felder  des  Jahresabflusses  mit  empirischen  Orthogonalfunktionen  ausgenutzt.  Es
wurden  die  ersten  Komponenten  der Zerlegung  und  ihre  Verknüpfung  mit  Faktoren  der
Bildung  des  Jahresabflusses  untersucht.  Es  wurde  angezeigt,  dass  die  ersten  2
Komponenten den Einfluß der größten Luftprozesse auf die Bildung des Jahresabflusses
haben.  Die temporale Komponente der ersten Komponente der Zerlegung der Felder des
Jahresabflusses beschreibt  die allgemeinsten Gesetzmäßigkeiten der Schwankungen des
Jahresabflusses  der  Flüsse in  der  Ukraine,  wonach sie  auf  die fraktale  Analyse gestellt
wurde. Als Charakteristik  der räumlich-zeitlichen Variation des Jahresabflusses wurde die
Variationsfunktion F2 (s) ~ sH  ausgenutzt, wo H ein Exponent der Maßstabsbestimmung ist,
der der fraktalen Dimension identisch ist.  Es wurde festgestellt,  dass H = 0.77,  was der
Hypothese des Hurst-Exponenten entspricht.
Schlüsselworte: Jahresabflusses  der  Flüsse,  fraktalen  Dimensionen,  empirischen
Orthogonal funktionen  



1.Introduction
A new approach to  the neural  networks  and multi-fractal  modelling  the frustrated

hydrological systems is developed and numerically realized. It is well known that hydrological
(etc.) systems (and the dynamics of their key characteristics fluctuations) can be described
as a mechanical dissipative multi-body systems, which are fundamentally non-linear (Davis,
1991; Kothyari and Singh, 1999; Loboda, 1998;). General non-linear parameter dependent
dynamical dissipative systems very often have parameter ranges, in which the dynamics is
chaotic. Chaotic behaviour in the sense of a fully deterministic evolution of the systems in
time bounded in phase space with sensitive dependence on initial conditions, might therefore
be expected to occur in above cited systems. Dissipative non-linear systems typically have a
long-term behaviour,  which is described by an attractor in phase space. At the same the
chaotic dynamics in details  is often unknown. It  is well  known that  an attractor  is called
strange attractor  if  its  dimension is non-integer,  i.e.  fractal.  Non-linear systems of  fractal
objects  like  interfaces or  time-series is their  scaling  property  related to invariance under
magnification.  For  uniform  fractals  the  scaling  is  uniquely  described  by  one-fractal
exponents, the so-called fractal dimension. In last years studying the fractal properties of
dynamical systems is of a great interest. In this paper we consider an effective method for
treating the non-linear complex systems, based on the “neural networks” and multi-fractal
modelling (Glushkov et al., 2001; Loboda, 1998; Loboda, 2001). Approach developed allows
getting  a  possibility  of  forecasting  the  evaluation  dynamics,  including  the  extreme
phenomena in non-linear complex systems. We apply these models to treating the chaotic
dynamics and fluctuations of the annual runoff for natural rivers. 

2. Multi-fractal modeling of nonliniar hydrological systems: annual runoff time
series and fractal dimension

In last years the fractal structures in hydrodynamics, astrophysics etc. attracts a great
interest.  Different  theoretical  models  are  proposed  and  experiments  in  laboratories  and
nature objects  are carried out  (Cschertzer  D.,Lovejoy S.,1990).  A principal question is in
what degree the properties of observed fractal structures are general? Recently it has been
found that the similar large scaled fractal structures (with fractal dimension D~4/3) may be
realized in  laboratory  turbulence (space scale  is  10~1 м),  in  an ocean and the galaxies
formations  (scale  till  102 Мps).   These  structures  have  the  percolation  character
(Lukkin,1988).

Probably the most number of papers regarding the fractal structures is devoted to the
turbulence  phenomenon.    Usual  application  of  the  fractal  formalism  here  as  follows
(Bershadsky  A.G.,1990).  The  region,  where the turbulent  liquid moves is divided on the
cubic cells with the characterized Kolmogorov’s scale  T.  Можно There is existed a critical
concentration of cells with probability 0<рс<1 when at first unlimited cluster of turbulented
cells arises that leads to radical changing in the energy transformation. Before this moment,
introduced  in  motion  region  energy  resulted  in  the  increasing  number  of  cells  and
dissipation. After  appearance of  cited cluster  the cells concentration will be increase.  Its
appearance, as it’s well known, is a critical phenomenon. Characterized size of vortex cluster
l  в(in  region of   pc)  (Bershadsky  A.G.,1990):  l~|Рс-Р|-v .  A  critical  size v is  an universal
parameter and independent upon the space topological dimension. This parameter (typical
value v~0,9) is linked with fractal dimension Ds of the vortex cluster skeleton. Further if the
initial  filed of  large scaled velocity is known (the vortexes of  scale lо  are excited)  then a
cascade scale dividing process leads to hierarchy of vortexes of the scales ln~q-nl o (q — the
scale division parameter). Process of the energy transfer on scaled cascade is chaotic one.
As result, anisotropy and large scaled inhomogenity  of the velocity initial field influences on
statistical pulsation regime in less degree during decreasing the scale that is led to scaled
invariance and local anisotropy on sufficiently little scales (lо»ln»?). For isotropic pulsation the
energy distribution on scales  (l~k1‚  k—wave number)  is defined by spectral  density  E(k).
Simple physical arguments allow to introduce a characteristic pulsation period:   Tт~ [E(k)kз]-

1/2  ,  k m ~lm-1 .   It may be interpreted as time for exciting the vortexes of scale  lm+1 by the

vortexes of scale lm . A time for exciting the full cascade of vortexes: t ~


0m
mT . The more



interested value is  (  t -tm)~ 


Mm
mT .  Under sufficiently big values of  M it  is true a scaled

invariance and scaling representation: E(k)~k-a  . After M dividing fractions insist of the single
initial vortex it will be N ~qм number of vortexes of the scale lм~qмl0.  This system of vortexes
will occupy some volume in a space with effective size l0, and it can be written: N~l*Ds , where
Ds is a fractal dimension. Further one can write the following expression: l (tM .)~ (t-tm)2/(a-3)Ds.
Numeric  calculations  of  the  fractal  dimension  allowed  to  obtain  the  following  value  for
dimension: 1,350,05. Another interesting example is the fractal especialitites in dynamics of
ocean system. In fig.1 there are presented data (from ref. Oceanology)  of observations in
different points of thermocline at the horizon of   100m. Here there are regions with scaling
(parameter «4/3» is indicated by solid lines) in the large scales part of spectra. 

Figure 1-   Fractal especialitites for in the large scales part of spectra 
     (for ocean system: thermocline at horizon 100m) 

Another examples of the fractal structures are the ones in the astrophysical objects.
Under supposition that a substance in the universe is in turbulent motion,  then the large
scaled accumulations (galaxies and clusters) occupy the volume where an active dissipation
of energy takes place, i.e. fractal dimension   of the turbulent dissipation field coincides with
dimension of field of the substance density  in the form of galaxies and their accumulations.
For these systems there is obtained the following value of the fractal dimension: 1,3±0,l , i.e.
practically «4/3». In this light especial interest is called by problem of determining the fractal
dimension of the other nature objects, namely, the aquifer systems. More exactly, speech is
about  a  search  of  the  fractal  properties  in  the  key  physical  characteristics  of  the  river
systems. We will discover the fractal properties in the time-series of run-off (annual run-off )
for some nature aquifer systems.  As an example, two rivers systems are considered.

3. Procedure for ascertainment of fractal dimensions of river systems
On  an  investigation  of  runoff  variables  a  calculation  technique  for  the  fractal

dimensions differs from the geometrical approach. Half of century ago Hurst (1951) shown
that  the  long-range  statistical  dependencies  appear  in  the  series  of  annual  runoffs  for
different rivers. These dependencies indicate the presence of self-similarity properties in the
oscillations of runoff and hydrological processes. Per se Hurst discovered the presence of
self-affinal properties in the observational series of runoff. A definition of fractal properties for



hydrological  variables  implies  statistical  scale  invariance  (scale  self-similarity).  i.e.  the
similarity with some scale transform for any part of object to the whole one or to any part
from small ones.

If time series is stationary then for the time scaling we can apply the technique of
standard spectral analysis, i.e. we show a power spectrum E(f) for these time series as a
frequency-dependent one. For the stationary time series under long-term correlations should
be the dependence as follows

E(f)  f , (1)

where f is the frequency. Here the exponent   is inversely connected to the exponent   of
corresponding autocorrelation function r(s) as

 = 1 – ,                                                   (2)
where

r(s)  s.                                                                       (3)       

On the other hand, the exponents  and  serve for the scale of argument. Note that if  = 0
then we may assume that data is not correlated and the process is considered as the "white
noise" one.
For the case if not basic centralized series (i = xi – x ) are subject to Fourier transform but
their consecutively integrated magnitudes zn
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then according to the Wiener-Klintchin theorem the spectral density can be represented as
follows

E~ (f)  f 2, (5)

where 2+ can be also considered as the scaling index.
The  scaling  and  the  ascertainment  of  fractal  dimensions  for  most  hydrometeorological
variables  can  be  obtained  by  investigating  the  time  or  spatial  variation  of  variable
investigated in the time or space with a step s. A fluctuation of characteristics investigated on
some period or given distance is implied as a variation. For the multifractal approach the
integrated  function  performing  a  decomposition  of  set  into  subsets  for  the  consequent
ascertainment of scale self-similarity becomes (Koscielny-Bunde, 2003)

  

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sN q

ssq zzsF
1

,1,  = s(q), (6)

where  the  variable  q is  the non-zero  real  value;  Ns =  int(N/s);   is  the  number  of  non-
overlapping  segments;  z,s is  the  magnitude  of  the  zn (see  Eq.  (4))  calculated  for  each
segments; and (q) is Rényi’s scaling exponent or fractal dimension. The difference z,s – z-

1,s corresponds to the increment zn on the segment s.
If (q) obey the linear dependence by  then it can be assumed that the event investigated is
monofractal; in the converse case this event is considered as multifractal.
Under q = 2 we obtain equation for the standard analysis of fluctuations; in the general case,
this analysis is represented by
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For  uncorrelated  variables  F2(s)   s .  If  in  the  time  series  there  exists  long-term
correlations then we may assume that the variance  F2(s) is scaled with the self-similarity
exponent H

)(sM  F2(s)  sH. (8)

It is ascertained that the exponent H is connected with the exponents  and  as follows

2
1

2
1

 
H . (9)

For monofractal data the exponent H corresponds to the Hurst exponent.
The function  F2(s) can be considered as the square root of structure function, i.e.  F2(s) =

)(sM . This means that analyzing the hydrometeorological variables with the stationarity,

which  is  local  and  remains  on  the  relatively  small  intervals  of  argument  variation,  the
structure  function  M(s)  can be considered  along  with  the  correlation one.  This  structure
function  is  determined  as  the  average  of  distribution  for  the  squared  difference  of  the
sections of random function. If  the stationary function is specified in the discrete measure
points then the structure function can be represented by
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These structure functions can be both temporal and spatial ones. The latter represent the
average of distribution for the squared difference of characteristics in the two points located
on the distance  L one  from another.  Kolmogorov  (1941)  has  developed and used  the
spatial  structure function for  the scaling of  turbulent  eddies and the velocity of  flow was
considered as the estimated characteristic.
The  structure  functions  are  assumed  as  a  basis  of  the  variation  approach  (Mark  and
Aronson, 1984) developed to examine the self-affine objects. The essence of this approach
lies to trace the behavior of variation F for come function Z given on some set of points on a
plane. F is determined by

F = (Zi – Zj)2,    (11)

where Zi and Zj are the values of function in the points i and j, and the angle brackets signify
the averaging in whole set of points. This corresponds to the equation of self-affine function
(9). If the variation F is scaled with the self-similarity exponent H, i.e. V  L2H, then the plane
can be considered as self-affine one with the fractal dimension d =  E –  H, where E is the
Euclidean dimension. Hence we receive results represented usually in the double logarithmic
scale as the dependence V  on the distance L.

4. Resalts
4.1.  The  properties  of  self-similarity  in  the  spatial  distribution  for  annual

runoff’s statistical parameters of Ukraine’s rivers.
Now we apply Mark and Aronson’s approach of variations to determine the statistical scale
invariance in the spatial distribution for annual runoff’s statistical parameters. As an example,



we consider the spatial distribution of long-term means for the annual runoff  q  in the right-
bank  Ukraine  (79  hydrological  sites).  The  spatial  variation  is  evaluated  as  the  spatial
structure function in Eq. (10). This function is represented by the magnitudes  q  for each
spatial point as follows

  


 2

1
1)( ji AA
m

LM ,  (12)

where M(L) is the magnitude of spatial structure function in the segment L; Ai and Aj are
the characteristics in the points i and j (in our case Ai = iq ); and m is the number of pair for
magnitudes occurring in the segment L.
Within  the  bounds of  Ukraine the  square  net  with the  sides  of  75 km is  specified.  The
distances  apart  the  centroids  of  basin  are  determined  by  using  the  false  coordinates
calculated by the Pythagorean theorem

   22
, ijijji yyxxL  , (13)

where L is the distance apart the objects. This distance is evaluated for each pair of objects
i, j by the false coordinates of object location xi, yi and xj, yj.
With  the purpose to calculate the spatial structure function the nonoverlapping segments
(gradations)  L are given. The pairs of  basins falling into given gradation are chosen on
basis of distance matrix. The difference (Ai – Aj) is calculated for each pair of basins and the
corresponding  magnitude  of  structure  function  (see  Eq.  (10))  is  estimated  for  each
gradation. Computational results are usually represented as the diagram of  M =  f(L2) or of
M  = f(L). In our case, Figure 2 shows that for L  400 km the dependence of variation on

the distance has a power nature with the exponent  H = 0.28. This exponent is determined
taking the double logarithm. For E = 2 we have the desired value of fractal dimension (d =
1.72).  Similarly,  invariance's  properties  in  the  spatial  distribution  for  annual  runoff's
coefficient of variation Cv are determined. For this coefficient the fractal dimension is 1.63. In
contrast  to  the  averaging  magnitudes,  the  spatial  correlation  of  Cv is  observed  for  the
distance  L  200  km  only.  At  the  same  time  statistical  parameters  such  as  the  auto-
correlation coefficient and the skewness are not actually correlated in the space. In practice
this  appears  as  short  distances,  on  which  the  spatial  structure  function  amounts  to  the
"satiation". It is obvious that for this case possibility to determine the exponent H not offers.

4.2.  Property  of  self-similarity  for  annual  runoff  series  on  the  basis
decomposition of runoff fields 

The  approaches  stated  in  Section  3  are  useless  for  the  fractal  analysis  of  non-
stationary  functions as these approaches  can lead to the erroneous results.  To exclude
trends  caused  by  the  seasonal  cycles,  economical  activity,  and  global  warming,  the
approaches  of  the  decomposition  or  wavelet  analysis  are  applied.  By  means  of  these
approaches the filtration of initial data is carried out.

As consistent with this method (e.g. Obied and Creuten, 1986), any matrix entry of
initial variable ij (the latter means the i-th objects at the j-th time point) can be calculated if
the eigenvectors problem is solved
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In  Eq.  (11),  ij are  the components  of  j-th  random vector  (field)  for  the  centralized and
normalized initial  data;  Uki are the weighting  coefficients  reflected the  contribution of  i-th
object  into  each  k-th  component  or,  in  other  words,  the  components  of  eigenvector  for
correlation matrix; Zkj are the components of k-th decomposition component; m and n are the
number of objects and the initial series length respectively.
The magnitudes of Uki vary spatially under the change of object but is time-independent. The
system of  function  Uki is  often  represented  as the function  of  coordinates  (xi,  yi)  for  i-th
objects as follows

Uki = f(xi, yi) = Uk(xi, yi).                 (15)

The components of row-vector for the matrix Z [Zk1  Zk1  ..  Zkp  ..  Zkn] can be represented as
the function of time (amplitude function) and are common for all objects

Zkj = f(t) = Zk(t). (16)



First  component  of  decomposition  describes  most  part  of  unitial  dispersion.  Amplitude
function of first component reflects main proreties of annual flow fluctuation, characteristic
for studing region.

We analysed the amplitude functions Zkj. It is determined that the amplitude function
for the first component of decomposition Z1j represents main patterns for the annual runoff
variations in  the considered region.  This  time distribution can be interpreted as territory-
averaged  variation  of  runoff.  Such  fluctuation  is  conditioned  by  global-scale  processes.
Therefore the scaling of first amplitude function using methods of fractal analysis allows to
determine the dimensions both single hydrological object and complex of ones.

We considered longest series for the annual runoff of Ukraine's rivers such as Desna
(Chernigov),  Prut  (Chernovcj),  Severskiy  Donets  (Lysichansk),  Prypyat'  (Mozyr'),  Dnestr
(Galich), Yuzhniy Bug (Aleksandrovka), and Dniper (Rechitsa) with total duration of 74 years
(1914-1987 years). The first amplitude function Z1j (Fig. 3), which is unified for whole Ukraine
and describes 48% of initial data dispersion, is subject to the analysis of variance.

Figure 3 - First amplitude function of annual runoff of Ukraine

Variation function  F2(s) calculated on first  time component of decomposition  Z1j by
using Eqs. (4) and (7) is power-like. The exponent H is determined in log-log plot. Figure 3
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shows that the curve is fitted by the straight line with tangent of slope angle 0.78 at time
scale up to 10 year. In accordance with Eq. (9)  = 2 – 2H = 0.46. For s > 10 the function F2

(s) works for the "satiation state" H  0.5. The latter indicates the deficiency of correlation.

Figure 4 – Spectral densiity for first (1) and second (2) amplitude functions

5. Conclusion
Approach developed allows getting a possibility of forecasting the evaluation dynamics,

including the extreme phenomena in non-linear complex systems. We apply these models to
treating the chaotic dynamics and fluctuations of the annual run off for natural rivers. Within
neural networks-like model we introduce a non-linear component representing the immediate
and  moderately  retarding  response  and  linear  component  representing  the  retarding
response of the complex system. The output function Z  within systems model is as follows
(Kothyari and Singh, 1999):
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where j = 1,2,...,J is the number of independent inputs, J is the number of subsystems, (n+1)
is the total memory length of model; P is the matrix of the j-th input series, corresponding to
the j-th sub-system; Ui,k – the ordinates of the non-linear part of the response function, Ui –
the ordinates of its linear part. The solution of model master equation for a calibration series
of N outputs values Z1,...,ZN can be written in vector-matrix form as:

Z = P(1) U(1) + … + P(N) U(N).                                                       (18)
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In  contradistinction  to  standard  models,  model  proposed  allows  to  account  the
essential non-linearity of processes, inverse links, minimally realized governing elements. 

Non-uniform  and  multi-fractal  objects  can  be  more  completely  characterized  by
spectrum of  D(q)  fractal  exponents,  where  q is  a real  number,  the so-called generalized
dimension, where the fractal dimen-sion is equal to D(0) and the function D(q) is generally
referred to as multifractal spectrum (Davis, 1991).

Mathematically, the general aim of the multifractal formalism is to determinate the f()
singularity  and  our  analysis  (annual  runoff  fluctuations)  shows  that  the  average  fractal
dimensionality is 1.3-1.9.
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